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ABSTRACT: Spatial climate data sets of 1971–2000 mean monthly precipitation and minimum and maximum temperature
were developed for the conterminous United States. These 30-arcsec (∼800-m) grids are the official spatial climate data
sets of the U.S. Department of Agriculture. The PRISM (Parameter-elevation Relationships on Independent Slopes Model)
interpolation method was used to develop data sets that reflected, as closely as possible, the current state of knowledge of
spatial climate patterns in the United States. PRISM calculates a climate–elevation regression for each digital elevation
model (DEM) grid cell, and stations entering the regression are assigned weights based primarily on the physiographic
similarity of the station to the grid cell. Factors considered are location, elevation, coastal proximity, topographic facet
orientation, vertical atmospheric layer, topographic position, and orographic effectiveness of the terrain. Surface stations
used in the analysis numbered nearly 13 000 for precipitation and 10 000 for temperature. Station data were spatially quality
controlled, and short-period-of-record averages adjusted to better reflect the 1971–2000 period.

PRISM interpolation uncertainties were estimated with cross-validation (C-V) mean absolute error (MAE) and the 70%
prediction interval of the climate–elevation regression function. The two measures were not well correlated at the point
level, but were similar when averaged over large regions. The PRISM data set was compared with the WorldClim and
Daymet spatial climate data sets. The comparison demonstrated that using a relatively dense station data set and the
physiographically sensitive PRISM interpolation process resulted in substantially improved climate grids over those of
WorldClim and Daymet. The improvement varied, however, depending on the complexity of the region. Mountainous and
coastal areas of the western United States, characterized by sparse data coverage, large elevation gradients, rain shadows,
inversions, cold air drainage, and coastal effects, showed the greatest improvement. The PRISM data set benefited from a
peer review procedure that incorporated local knowledge and data into the development process. Copyright  2008 Royal
Meteorological Society
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1. Introduction

Spatial climate data sets in digital form are currently in
great demand. The most commonly used spatial climate
data sets are gridded estimates of mean daily minimum
and maximum temperature and total precipitation on a
monthly time step, averaged over a nominal 30-year
period. The demand for these data sets has been fueled
in part by the linking of geographic information systems
(GIS) to a variety of models and decision support tools,
such as those used in agriculture, engineering, hydrology,
ecology, and natural resource conservation.

Spatial climate data are often key drivers of computer
models and statistical analyses, which form the basis for
scientific conclusions, management decisions, and other

* Correspondence to: Christopher Daly, PRISM Group, Department of
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important outcomes. It is therefore imperative that these
data sets provide a realistic representation of the major
forcing factors that affect spatial climate patterns. To
achieve this high level of realism, methods used to create
the data sets must explicitly account for these factors.
A detailed discussion of these factors is given in Daly
(2006), and a brief overview is provided here.

General circulation patterns are largely responsible for
large-scale climate variations, and include the positions
of storm tracks, prevailing wind directions, monsoonal
circulations, and other defining features of a region’s
climate. It is assumed that most of these patterns occur
at scales large enough to be adequately reflected in the
station data, and therefore are not explicitly accounted
for by interpolation methods. Physiographic features on
the earth’s surface, namely water bodies and terrain,
modulate these large-scale climate patterns. Water bodies
provide moisture sources for precipitation, and create
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complex temperature gradients along coastlines and in
adjacent inland areas. Terrain effects include the direct
effect of altitude on climate conditions, the blockage and
uplift of major flow patterns by terrain barriers, and cold
air drainage and pooling in valleys and depressions.

The relationship between elevation and precipitation
is highly variable, but precipitation generally increases
with elevation (Oke, 1978; Barry and Chorley, 1987).
Exceptions are when terrain rises above the height
of a moist boundary layer or trade wind inversion
(Mendonca and Iwaoka, 1969). Blocking and uplifting
of moisture-bearing winds amplifies precipitation on
windward slopes, especially those with steep windward
inclines, and can sharply decrease it on leeward slopes
downwind, producing rain shadows (Smith, 1979; Daly
et al., 1994, 2002).

Temperature exhibits a strong, predictable decrease
with elevation when the atmosphere is well mixed, such
as occurs on summer days in inland areas (e.g. Willmott
and Matsuura, 1995). The main summer exception is in
coastal regions with well-defined marine layers, where
maximum temperatures often increase with elevation
above the marine inversion. Winter temperatures, and
minimum temperatures in all seasons, have a more
complex relationship with elevation. In the absence of
solar heating or significant winds to mix the atmosphere,
temperatures stratify quickly, and cool, dense air drains
into local valleys and depressions to form pools that
can be hundreds of metres thick (Geiger, 1964; Hocevar
and Martsolf, 1971; Bootsma, 1976; Gustavsson et al.,
1998; Lindkvist et al., 2000; Daly et al., 2003). This
results in temperature inversions, in which temperature
sharply increases, rather than decreases, with elevation
(Clements et al., 2003). In Polar regions, widespread
regional inversions hundreds of kilometres in extent
can dominate wintertime temperature patterns (Milewska
et al., 2005; Simpson et al., 2005). Terrain can also serve
as a barrier between air masses, creating sharply defined
horizontal temperature gradients.

Coastal effects on temperature are most noticeable
in situations where the water temperature is significantly
different from the adjacent land temperature (Haugen and
Brown, 1980; Atkinson and Gajewski, 2002). Along the
California coastline during summer, the contrast between
the cool Pacific Ocean and the adjacent warm land mass
can create daytime air temperature gradients of more than
10 °C in just a few kilometres across the coastal strip
(Daly et al., 2002).

The above factors are most important at scales from
less than 1 km to 50 km or more (Daly, 2006). Several
additional spatial climate-forcing factors are most impor-
tant at relatively small scales of less than 1 km, but can
have influences at larger scales as well. These factors
include slope and aspect (McCutchan and Fox, 1986;
Barry, 1992; Bolstad et al., 1998; Lookingbill and Urban,
2003; Daly et al., 2007), riparian zones (Brosofske et al.,
1997; Dong et al., 1998; Lookingbill and Urban, 2003),
and land use/landcover (Davey and Pielke, 2005). Land
use/landcover variations are a major consideration in the

spatial representativeness of climate stations at much
larger scales. For example, stations located near park-
ing lots, buildings, or other heat-absorbing surfaces may
have very different temperature regimes than those in
open grasslands or heavily vegetated areas (Davey and
Pielke, 2005). In data-sparse regions, a single station, and
its particular land use/landcover regime, may influence
the interpolated climate conditions for tens of kilometres
around that station.

This paper describes the development of spatial climate
data sets of 1971–2000 mean monthly total precipitation
and daily minimum and maximum temperature across the
conterminous United States, using methods that strive
to account for the major physiographic factors influ-
encing climate patterns at scales of 1 km and greater.
These data sets, created at 30-arcsec (∼800-m) grid res-
olution, were commissioned by the U.S. Department of
Agriculture through the Natural Resources Conservation
Service (USDA-NRCS) to serve as the official spatial
climate data sets of the USDA. They are updates of the
2.5-arcmin (∼4-km) 1961–1990 spatial climate data sets
developed in the 1990s (USDA-NRCS, 1998). The new
data sets were interpolated using the latest version of the
Parameter-elevation Regressions on Independent Slopes
Model (PRISM) climate mapping system. Section 2 of
this paper describes the study area and the digital eleva-
tion model (DEM) used. In Section 3, the preparation of
station data is described. Section 4 provides an overview
of the PRISM climate mapping system for this applica-
tion, and summarizes the modelling, review, and revision
process. Section 5 presents the resulting gridded data sets,
discusses model performance, and compares and con-
trasts the PRISM data sets to two other spatial climate
data sets. Concluding remarks are given in Section 6.

2. Study area and digital elevation model

Climate data sets were developed at 30-arcsec resolution
in geographic (lat./long.) coordinates. A 30-arcsec grid
cell is approximately 900 × 700 m at 40°N latitude, and
is referred to as ‘800 m’ after the discussion of the eleva-
tion grid in the next section. The boundaries of the grid
were 22 and 50°N and 65 and 125 °W. Memory, CPU, and
model parameterization considerations required that inter-
polation be performed separately in three regions: west-
ern, central, and eastern United States, and the resulting
grids merged to form a complete conterminous U.S. grid.

Care was taken to include as many islands offshore
the U.S. mainland as possible, but undoubtedly some
very small islands were missed. To accommodate GIS
shoreline data sets of varying quality and resolution,
the modelling region was extended offshore several
kilometres and generalized to include bays and inlets
(Table I). However, the gridded climate estimates are
valid over land areas only.

The DEM was the single most important grid input to
the interpolation; it provided the independent variable for
the PRISM elevation regression function and served as
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Table I. Methods for preparation of PRISM input grids, part 1.

Model
input
grid

Description Climate
element/region

Units Step Starting
grid

Operation

U.S. boundary and
actual coastline
mask

Mask of
conterminous U.S.
boundaries and
coastlines

All/All Binary (1 or
0)

– U.S. boundary
vector file

Convert vectors to
rasters

Generalizedcoastline
and modeling mask

Mask for modelling
region, generalized
coastlines

All/All Binary (1 or
0)

– U.S. boundary and
actual coastline
mask

Grow mask
beyond U.S.
boundaries; fill in
bays and inlets

Coastal proximity
TCE

Distance from
coastline, with bays
and inlets treated as
transition areas

Max and min
temp, central
and eastern US

Kilometres
(0–50)

1 US boundary mask Distance from
coastlines

2 Modelling mask Distance from
coastlines

3 Steps 1 and 2
grids

Average the two
grids

Coastal proximity
TW

Index of marine
penetration through
complex terrain

Max and min
temp, western
US

Index
(0–1000)

1 US boundary
mask and 800-m
temperature DEM

Coastal advection
model (Daly et al.,
2003)

2 Generalized
coastline mask

Coastal advection
model (Daly et al.,
2003)

3 Steps 1 and 2
grids

Step 3 =
0.75(Step 1) +
0.25 (Step 2)

Coastal proximity
PCE

Distance from
generalized coastline

Precip, central
and eastern US

Kilometres
(0–90)

– Modelling mask Distance from
coastlines

Coastal proximity
PW

Moisture index Precip, western
US

Index
(0–1000)

– Modelling mask
and 800 m
precipitation DEM

Coastal trajectory
model (Daly et al.,
2003)

the basis for most of the other physiographic input grids
to PRISM (Section 4). The DEM used in this study was
derived from the 3-arcsec (∼80-m) National Elevation
Database (NED) (NED; http://gisdata.usgs.gov/NED/).
The NED elevation data was found to be superior to
other DEMs for the conterminous United States, such as
GTOPO30, Digital Terrain Elevation Database (DTED),
and Space Shuttle Radar Topography Mission (SRTM),
for this application. The GTOPO30 and DTED DEMs
had noticeable elevation breaks, or ‘seams’ along some
of the original U.S.Geological Survey (USGS) quad
boundaries. The SRTM DEM had numerous grid cells
with missing data in areas of steep terrain, and possessed
significant ground clutter associated with low microwave
signal-to-noise ratios.

A 30-arcsec (∼800-m) version of the NED DEM was
derived from the 3-arcsec (∼80-m) NED DEM by apply-
ing a modified Gaussian filter (Barnes, 1964). This fil-
ter provides a truly circular averaging area (as opposed
to a typical rectangular block, which causes distortion
along the diagonals) and weights the surrounding grid
cells in a Gaussian, or normal, distribution with distance,
which better preserves local detail at and around the cen-
tral grid cell than does a uniformly weighted average.

This 30-arcsec (∼800-m) DEM was used for interpolat-
ing maximum and minimum temperature. An additional
filtering step was performed to obtain a DEM suitable
for precipitation interpolation. The Gaussian filter was
applied to the 30-arcsec (∼800-m) DEM to filter out ter-
rain features up to 3.75 arcmin (∼7 km) in extent, while
retaining the 30-arcsec (∼800-m) grid resolution. The
direct effects of elevation on precipitation appear to be
most important at scales of 5–10 km or greater, owing to
a number of mechanisms, including the advective nature
of moisture-bearing airflow, the viscosity of the atmo-
sphere, delays between initial uplift and subsequent rain-
out, and the movement of air around terrain obstacles
(Daley, 1991; Daly et al., 1994; Funk and Michaelsen,
2004; Sharples et al., 2005). In this paper, the two DEMs
are hereafter referred to as the temperature and precipi-
tation DEMs (Table II).

3. Station data

3.1. Data sources

Data from surface stations, numbering nearly 13 000
for precipitation and nearly 10 000 for minimum and
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Figure 1. Locations of (a) surface precipitation stations and (b) surface temperature stations used in the interpolation.

maximum temperature, were obtained from a variety of
sources with an eye towards creating the most compre-
hensive data set possible. These sources, summarized in
Table III, included National Weather Service Cooperative
Observer Program (COOP) and Weather Bureau Army
Navy (WBAN) stations (http://cdo.ncdc.noaa.gov/CDO/
cdo); USDA NRCS Snow Telemetry (SNOTEL) and
snowcourses (http://www.wcc.nrcs.usda.gov/snow/);
USDA Forest Service and Bureau of Land Manage-
ment Remote Automatic Weather Stations (RAWS;
http://www.wrcc.dri.edu/); California Data Exchange
Center (CDEC) stations from a variety of networks
(CDEC; http://cdec.water.ca.gov); Bureau of Reclama-
tion Agrimet sites (http://www.usbr.gov/pn/agrimet);
Environment Canada stations south of 50N, (EC;
http:// climate.weatheroffice.ec.gc.ca); and miscellaneous

stations from Reynolds Creek Experimental Watershed,
ID; H.J. Andrews Experimental Forest, OR; Nevada
Dept. of Water Resources; USDA Forest Service; USGS;
and other local networks (Figures 1(a) and (b)). RAWS
precipitation data were used only for the months of
May–September because many of these stations are
not maintained in winter and their unheated tipping-
bucket gauges do not measure snowfall well and
are subject to freezing. To better define tempera-
ture profiles in complex situations, such as tempera-
ture inversions, upper-air temperature grid points for
the western and eastern United States were obtained
from the Global Upper-Air Climatic Atlas, which con-
sists of European Center for Medium Range Weather
Forecasting (ECMWF) model grid point data at 2.5°

resolution for the period 1980–1991(http://ols.nndc.noaa.
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Table III. Number of stations used in the mapping process, and native averaging interval. See text for definitions of acronyms.

Source Native
averaging
interval

Precipitation Maximum
temperature

Minimum
temperature

COOP Daily 10 784 7663 7697
SNOTEL Daily 645 623 636
Snowcourse 1961–90 annual mean 324 0 0
RAWS Hourly 259 787 842
CDEC Daily, monthly, annual 156 223 238
Agrimet Daily 51 58 59
EC (Canada) 1961–90 monthly mean 483 326 324
Miscellaneous Various 142 3 3
Estimated 1971–2000 monthly mean 93 31 3
Upper-air 1980–1995 monthly mean 0 69 69
Total 12 937 9783 9871

gov/plolstore/plsql/olstore.prodspecific?prodnum=C00
338-CDR-S0001). The 500 hPa (∼5500 m) level was
chosen for the western United States, and the 700 hPa
(∼3000 m) for the eastern United States. (Upper-air data
were not needed in the central United States because of
a lack of elevated terrain.) These levels were sufficiently
far above the highest terrain features to minimize errors
involved in estimating surface temperatures from free air
values. As such, the upper-air values served as distant
‘anchor points’ for the temperature–elevation regression
functions.

3.2. Calculation of monthly values and quality control

As shown in Table III, station data were obtained in
a wide variety of time steps. Hourly station data were
aggregated to create daily values corresponding to mid-
night–midnight Local Standard Time (LST). Observa-
tions originally in Coordinated Universal Time (UTC,
from French translation) were converted to LST. The off-
set between UTC and LST was approximated by dividing
the station longitude by the factor 15°/h and rounding to
the nearest hour (e.g. a station at −125° longitude would
get an −8 h offset from UTC). Daily maximum and min-
imum temperatures were the maximum and minimum of
the hourly temperature observations for the 24-h local
period. Daily precipitation was the sum of the hourly
incremental precipitation, calculated from hourly accu-
mulations by subtracting the previous hour’s total from
the current hour’s total. Negative incremental amounts
(caused by evaporation, thermal expansion, resetting of
accumulations, etc.) were set to missing. Daily values
based on hourly observations were subject to the require-
ment that at least 18 of 24 observations must be non-
missing; fewer than 18 non-missing hourly observations
resulted in a missing daily value. Daily observations and
those based on hourly observations were then aggregated
to create monthly precipitation totals and mean maximum
and minimum temperatures. A minimum of 85% of non-
missing daily values were required for a monthly value
to be non-missing. Our 85% data completeness criterion

is not dissimilar to those used by the NCDC (NOAA-
NCDC, 2003) and the World Meteorological Organiza-
tion (WMO, 1989) in developing monthly temperature
and precipitation statistics.

Monthly precipitation amounts were estimated for
annual-only stations by searching for a nearby long-
term station with non-missing monthly totals that would
be most likely to have similar seasonality. Most of the
annual-only stations were located in the mountains of
the western United States, where precipitation seasonality
can vary dramatically with elevation. Therefore, a three-
dimensional (3D) distance measure was calculated, in
which 1 km of vertical (elevation) distance was equated
with 100 km of horizontal distance. The 100 : 1 ratio was
found to adequately consider elevation as well as distance
in choosing the optimal station. The annual-only total
was multiplied by each of the chosen station’s monthly
percent-of-annual to generate the corresponding monthly
total for the annual-only station.

Stations with data available at different time steps for
different periods were combined at the monthly time scale
to create the longest possible period of record (POR).
Data from some stations were available in more than one
time step for periods that overlapped temporally. When
overlap occurred, the precedence of data selection was
daily, monthly, and hourly. For example, if a station had
daily precipitation data from 1972–2000 and monthly
precipitation data from 1952–1974, monthly data would
have been used from 1952–1971 and daily data from
1972–2000.

Initial range checking was performed for precipita-
tion and maximum and minimum temperatures. Precipita-
tion observations were checked for negative and extreme
values, while temperature observations were checked
for extreme maximum and minimum values and for
maximum temperature less than minimum temperature.
Extreme value thresholds were selected on the basis of
the state in which the observing station resided and, in
the case of temperature, the month in which the obser-
vation was made (http://www.ncdc.noaa.gov/oa/climate/
severeweather/extremes.html). The threshold for extreme
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precipitation was chosen to be 115% of the state record
24-h precipitation. The threshold for extreme maximum
temperature was chosen to be 3 °C above the state
monthly record maximum temperature. Likewise, the
threshold for extreme minimum temperature was chosen
to be 3 °C below the state monthly recorded minimum
temperature. The additional allowances were to accom-
modate potential new records.

Daily precipitation observations and hourly incremen-
tal amounts derived from accumulation observations were
subject to both negative and extreme value checks, while
monthly precipitation observations were checked for neg-
ative values only. Monthly and daily maximum and min-
imum temperatures, as well as hourly air temperatures,
were subject to maximum and minimum temperature
extreme checks. Observations that failed any of the above
tests were set to missing.

Station elevations were checked for consistency against
800-m DEM elevations at the given station locations.
Elevation discrepancies of more than 200 m were inves-
tigated, and either the station location or elevation cor-
rected as a result.

Several spatial quality control (QC) procedures were
conducted on the monthly data. In an initial QC screening
step, monthly averages for 1971–2000 were calculated
for stations having data during this time period. Stations
not having data during 1971–2000 had historical aver-
ages calculated from their entire POR. These averages
were tested for spatial consistency using the ASSAY QC
system, a version of PRISM that estimates data for spe-
cific station locations and compares them to the observed
values (Daly et al., 2000; Gibson et al., 2002). Averages
failing the ASSAY QC check were immediately omit-
ted from further consideration if (1) they were RAWS
or CDEC stations, (2) they had less than three years of
historical data, or (3) had three or more years of histor-
ical data but had fewer than four consecutive months of
non-missing data during those years. These stations were
considered to be at highest risk for poor quality.

In the second spatial QC step, all individual monthly
values from the remaining stations were tested for spatial
consistency using the ASSAY QC system; values failing
this test were set to missing. The remaining monthly
values were averaged and subjected to adjustment, if
needed, as described in Appendix A.

In the third spatial QC step, all SNOTEL temperature
data were subjected to a recently developed spatial QC
system for temperature data from this network. Details
on the operation of this system are available in Daly
et al. (2005). Temperature data subjected to this QC
process were first passed through the aforementioned
range checks. SNOTEL temperature data were also tested
for extended periods of unchanging values (flatliners);
temperatures remaining unchanged (less than 0.1 °C daily
difference) for longer than ten consecutive days were set
to missing. In addition, temperature values remaining at
exactly 0.0 °C for two or more consecutive days (which is
a known problem in SNOTEL data) were set to missing.

3.3. Period-of-record adjustment

Monthly station data passing the above QC tests were
averaged to create 1971–2000 monthly means. A
1971–2000 monthly mean calculated using data from at
least 23 of these 30 years (75% data coverage) was con-
sidered to be sufficiently characteristic of the 1971–2000
period, and was termed a ‘long-term’ station. However,
many stations had a POR with fewer than 23 years. It
was advantageous to include these ‘short-term’ stations
in the analysis because they often added information to
the interpolation process at critical locations. In order
to minimize temporal biases from these short-term sta-
tions, their POR means were adjusted to the 1971–2000
period. The assessment and adjustment of averages was
performed for each month individually; therefore, it was
possible for a station to be considered long term for some
months and short term for others. A discussion of the
adjustment process is given in Appendix A.

4. PRISM overview and modelling

PRISM (Daly et al., 1994, 2001, 2002, 2003; Daly, 2006)
is a knowledge-based system developed primarily to
interpolate climate elements in physiographically com-
plex landscapes. The regression-based PRISM uses point
data, a DEM, other spatial data sets, and an encoded
spatial climate knowledge base to generate estimates of
annual, monthly, daily, and event-based climatic ele-
ments. These estimates are interpolated to a regular grid,
making them GIS-compatible. Previous mapping efforts
with PRISM have included peer-reviewed, official USDA
precipitation and temperature maps for all 50 states and
Caribbean and Pacific Islands; a new official climate
atlas for the United States; a 112-year series of monthly
temperature, precipitation, and dew point maps for the
conterminous 48 states; detailed precipitation and tem-
perature maps for Canada, China, and Mongolia, and the
first comprehensive precipitation maps for the European
Alps region (Daly et al., 2001; Hannaway et al., 2005;
Milewska et al., 2005; Schwarb et al., 2001a,b; Simpson
et al., 2005). Reports and papers describing PRISM are
available from http://prism.oregonstate.edu.

4.1. The climate–elevation regression function

PRISM adopts the assumption that for a localized region,
elevation is the most important factor in the distribution
of temperature and precipitation (Daly et al., 2002).
PRISM calculates a linear climate–elevation relationship
for each DEM grid cell, but the slope of this line changes
locally with elevation (through elevation weighting) as
dictated by the data points. Beyond the lowest or highest
station, the function can be extrapolated linearly as far
as needed. A simple, rather than multiple, regression
model was chosen because controlling and interpreting
the complex relationships between multiple independent
variables and climate is difficult. Instead, weighting of
the data points (discussed later) controls for the effects
of variables other than elevation.
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The climate–elevation regression is developed from X,
Y pairs of elevation and climate observations supplied
by station data. A moving-window procedure is used to
calculate a unique climate–elevation regression function
for each grid cell. The simple linear regression has the
form

Y = β1X + β0 (1)

where Y is the predicted climate element, β1 and β0 are
the regression slope and intercept, respectively, and X

is the DEM elevation at the target grid cell. The DEM
elevation is represented at a spatial scale appropriate
for the climate element being mapped (discussed in
Section 2).

4.2. Station weighting

Upon entering the regression function, each station is
assigned a weight that is based on several factors. The
combined weight (W ) of a station is given by the
following:

W = Wc[FdWd
2 + FzWz

2]1/2Wp Wf Wl Wt We (2)

where Wc, Wd, Wz, Wp, Wf, Wl, Wt, and We are the clus-
ter, distance, elevation, coastal proximity, topographic
facet, vertical layer, topographic position, and effective
terrain weights, respectively, and Fd and Fz are user-
specified distance and elevation weighting importance
scalars (Daly et al., 2002; Daly et al., 2007). All weights
and importance factors, individually and combined, are
normalized to sum to unity. Table IV summarizes how
the PRISM elevation regression and station weighting
functions account for the physiographic climate forcing
factors described in Section 1, and provide references for
further information. The focus in the following discus-
sions is on those station-weighting functions that have
not been previously published or have been updated for
the current application.

4.2.1. Cluster, distance, and elevation weighting

Cluster weighting seeks to limit the influence of stations
that are clustered with other nearby stations, which can
lead to over-representation in the regression function.
A detailed discussion of cluster weight is provided in
Appendix B.

A station is down-weighted when it is relatively distant
from the target grid cell. The distance weight is given as

Wd =
{ 1; d − rm ≤ 0

1
(d − rm)a

; d − rm > 0

}
(3)

where d is the horizontal distance between the station
and the target grid cell, a is the distance weighting
exponent, and rm is the minimum radius of influence. In
this application, a was set to 2, which is equivalent to an
inverse-distance-squared weighting function, and rm was
set to approximately 7 km for precipitation and 10 km
for temperature. The 7-km precipitation value matched

the estimated minimum scale at which elevation directly
affects precipitation patterns (discussed in Section 1). The
10-km temperature value represents the minimum scale of
the effects of land use on station representativeness in this
application. Implementing this minimum radius reduced
‘bull’s eyes’ and other artifacts created in the interpolated
temperature fields caused by variations in station siting
and the surrounding land use/land cover. These effects
are not yet well understood, but can be highly significant
(Mahmood et al., 2006).

A station is down-weighted when it is at a much
different elevation than the target grid cell. A discussion
of elevation weighting is given in Daly et al., (2002,
Section 4.1).

4.2.2. Coastal proximity

Coastal proximity weighting is used to define gradients
in precipitation or temperature that may occur due to
proximity to large water bodies (Daly et al., 2002, 2003).
Stations with coastal proximities similar to that of the
target grid cell are assigned relatively high weights in
the regression function.

For this application, coastal proximity guidance in the
PRISM modelling run was provided through four coastal
proximity grids, depending on the region and climate
element. In the central and eastern United States, the
coastal proximity grid for precipitation (abbreviated PCE)
was composed simply of distances from the generalized
coastline grid (Table I). A simple distance was adequate
because of a lack of terrain features. The generalized
coastline is used because bays and inlets were not con-
sidered to be as important moisture sources as the open
ocean for precipitation. In the central and eastern United
States, the coastal proximity grid for temperature (abbre-
viated TCE) was a weighted average of the distances
from the actual and generalized coastlines, the ratio-
nale being that bays and inlets experience a temperature
environment that is a transition between inland and fully
oceanic (Table I).

Complex terrain along the U.S. West Coast required
more sophisticated methods of estimating coastal proxim-
ity. An advection model was designed to quantify coastal
proximity for temperature mapping (abbreviated TW;
Table I). The advection model is a cost–benefit algorithm
that assesses the optimal path a surface air parcel might
take as it moves from the coast to each inland pixel. The
basic assumption is that the mean coastal influence expe-
rienced at a site will be the result of a flow path from
the coast that minimizes two factors: (1) modification of
the air by continental influences, which accumulates as
the path length over land increases (path length penalty);
and (2) loss of momentum caused by flowing over terrain
obstacles (terrain penalty). Predominant mesoscale flow
patterns, which aid certain flow paths and cause more
effective inland penetration, are also accounted for by
decreasing the path length penalty for predominant direc-
tions and increasing it for infrequent directions. For the
West Coast, flow paths from the west and northwest (typi-
cal summertime directions) were set to incur substantially
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less path length penalty than paths from the northeast,
east, and southeast (unusual directions). Algorithms for,
and operation of, the coastal advection model are given
in Daly et al. (2003). The western U.S. coastal proximity
grid for temperature is shown in Figure 2(a).

A simple trajectory model was designed to assess rela-
tive moisture availability to guide precipitation mapping
(abbreviated PW; Table I). The trajectory model is simi-
lar to the coastal advection model in that it accounts for
changes in moisture content due to path length and ter-
rain effects. It differs in that the air parcel trajectories
are straight line and invariant throughout the simulation,
as might be the case within large-scale synoptic circula-
tions that produce significant precipitation. The premise
here is that the mean potential for precipitation expe-
rienced at a site is the result of (1) loss of moisture
through rainout, which accumulates as the path length
over land increases, and (2) enhancement and suppres-
sion of precipitation caused by adiabatic cooling and
warming during flow over terrain obstacles. Conver-
gence is not considered in this simple model. Moisture-
bearing air flow along the West Coast is most commonly
southwesterly, with some variation around that direction.
Therefore, the trajectory model was run for three flow
directions: 230, 240, and 250° true, and the results aver-
aged as 0.2(230) + 0.6(240) + 0.2(250). Algorithms for,
and operation of, the trajectory model are given in Daly

et al. (2003). The western U.S. coastal proximity grid for
precipitation is shown in Figure 2(b).

4.2.3. Topographic facets

In complex terrain, climatic patterns are defined and
delineated by topographic slopes and barriers, creating
a mosaic of hillslopes, or ‘facets’, each potentially expe-
riencing a different climatic regime (Daly et al., 1994;
Gibson et al., 1997; Daly et al., 2002). Topographic facet
weighting effectively groups stations onto these individ-
ual facets at a variety of scales, to account for sharp
changes in climate regime that can occur across facet
boundaries, such as rain shadows and air mass transitions.
For example, topographic facet weighting improves the
interpolation in the vicinity of rain shadows by reducing
the mixing of stations on leeward and windward slopes,
which may have very different precipitation–elevation
(P–E) relationships.

Topographic facet guidance is provided to PRISM
through a series of topographic facet grids (Table II).
The current method for delineating topographic facets is
described in Gibson et al. (1997) and Daly et al. (2002).
Facet grids are constructed for six DEM smoothing
levels, or scales (Daly et al., 1994, 2002). The smoothed
DEM for each level is prepared by applying the Gaussian
filter (Barnes, 1964) to the precipitation DEM. The
horizontal filtering cut-off distance (i.e. how far out the

Figure 2. Western U.S. coastal proximity grids for (a) temperature (TW) and (b) precipitation (PW). Coastal proximity describes the optimal
path length from the coastline in kilometres, accounting for terrain blockage. Trajectory describes the straight-line path length from the coastline

in kilometres, modified by terrain blockage.
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averaging function extends) for each of the six levels
is controlled by a user-defined maximum wavelength
(Daly et al., 2002, Table II). The six levels are spaced
evenly from the original cell size of the DEM up to this
maximum, which is typically 60 km. In this application,
levels at 12, 24, and 36 km were used for precipitation
modelling, and levels at 0.8, 24, 36, and 48 km were used
for temperature. The topographic facet grid for a filtering
distance of 36 km is shown in Figure 3.

4.2.4. Two-layer atmosphere

While climate often varies monotonically with elevation,
many cases arise for which a monotonic change is not
realistic. Examples are mid-slope precipitation maxima
where the moist boundary layer is shallow relative to the
terrain height (Giambelluca and Nullet, 1991; Juvik et al.,
1993), and wintertime and nocturnal temperature inver-
sions in sheltered valleys, where temperature increases of
2.5–3.0 °C/100 m are not uncommon. PRISM divides the
atmosphere into two vertical layers to handle these situ-
ations. Layer 1 represents the boundary layer, and layer
2 the free atmosphere above. Stations in the same layer
as the target grid cell receive full weight, while those
in the adjacent layer receive lower weights. In essence,
the layer-weighting scheme limits the ability of stations
in one layer to influence the regression function of the
other. A fuller discussion of the vertical layer weighting
function is available from Daly et al. (2002, Section 6),
and Daly et al. (2003, Section 2.3).

A simple method was developed to spatially distribute
the approximate height of the top of a climatologically
persistent inversion layer, should it exist, for use in

mapping temperature. The inversion height represents a
candidate dividing line between stations, which may be
partially or fully dissolved by PRISM if the relationship
between the climate element and elevation is similar
above and below it (Daly et al., 2002).

A grid of elevations representing the top of the
boundary layer (layer 1) for the contiguous United States
under persistent temperature inversions was prepared
using a 800-m DEM by finding the minimum elevation of
all grid cells, spatially averaging these elevations within
an appropriate distance to form a ‘base elevation’ grid,
and adding a constant, climatological inversion height to
the base elevations (Table II). The combination of search
and averaging radii given in Table II was prepared for
the present application, and might not be transferable to
others. Mountain/valley systems span a wide range of
scales, and can therefore be delineated at a variety of
search and filtering radii, depending on grid resolution
and station density.

Our analyses of rawinsonde data from several cities
in the United States with persistent climatological inver-
sions, mostly during winter, indicated that the inver-
sion top typically occurred at roughly 200–300 m above
ground level. Therefore, 250 m was added to the base
elevation at each grid cell to obtain the potential inver-
sion height above sea level. While this is only a
rough approximation of the inversion height, it has been
effective for modelling purposes (Table II). The poten-
tial inversion height grid for the contiguous United
States is illustrated in Figure 4. Valleys, plains, and
other low-lying areas tend to fall within the bound-
ary layer, while local ridge tops and other elevated

Figure 3. Topographic facet grid for the conterminous United States at a filtering distance of 36 km.
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Figure 4. Potential inversion height grid for the conterminous United States, illustrated as the difference between the inversion height and the
800-m DEM elevation. Terrain rising above the inversion height (in layer 2) is shaded, and terrain falling below this height (in layer 1) is

unshaded.

terrain emerge into the free atmosphere (Johnson et al.,
2000).

The inversion height grid was used in a somewhat
different manner for precipitation modelling. Here, it rep-
resented the estimated height of the moist boundary layer
within which precipitation could be expected to increase
with elevation; above this level, precipitation would be
expected to decrease. Experience working with observa-
tional data has suggested that precipitation increases with
elevation to the top of the highest available terrain in
most areas within the conterminous United States, except
within the marine-dominated precipitation regimes along
the West Coast. In Washington and Oregon, on the wind-
ward slopes of the Cascades and westward, the height
of the moist boundary layer was estimated at 2200 m
(Table II). In California, a fixed boundary layer height
oversimplified what is a very complex P–E relationship
in the Sierra Nevada; therefore, it was left unspecified to
allow the station data to dictate the local relationships at
higher elevations.

4.2.5. Topographic index

A related station weighting function assesses a site’s sus-
ceptibility to cold air pooling by considering its vertical
position relative to local topographic features, such as
valley bottom, mid-slope, or ridge top. Stations located
in deep valleys and depressions are more susceptible to
cold air pooling than those located on slopes or ridge
tops.

To simulate this, a ‘topographic index’ grid was cre-
ated, which describes the height of a pixel relative

to the surrounding terrain height. PRISM used this
information to weight stations during temperature inter-
polation. An 800-m topographic index grid was devel-
oped with methods similar to those of the inversion
height grid (Table II). The resulting grid represents the
local, or relative, elevation variations within a given area
(Figure 5). The selection of the search and averaging
parameters (Table II) was again somewhat subjective and
pragmatic, and depended largely on station data density
(Daly et al., 2007).

4.2.6. Effective terrain height

Terrain features produce varying P–E gradients,
depending partly on their effectiveness in blocking and
uplifting moisture-bearing air. Large, steeply rising fea-
tures that present a significant barrier to air flow can
generally be expected to produce steeper P–E gradients
than low, gently rising, features. A discussion of how
PRISM recognizes and accounts for differences in oro-
graphic effectiveness is given in Appendix C.

An 800-m effective terrain height grid for the con-
terminous United States was created by a method that
was again similar to that used in creating the potential
wintertime inversion height grid, with different search
and averaging parameters (Table II). The resulting grid
represented the profiles presented by terrain features
above the local base elevation of the terrain. Terrain
profiles oriented normal to the moisture-bearing flow
would be expected to have greater orographic effects than
those oriented parallel to the flow; however, this effec-
tive terrain height grid does not account for prevailing
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Figure 5. Topographic index grid for the conterminous United States. The scale indicates metres above the local base terrain.

wind directions, and therefore represents omni-directional
terrain profiles only. A final radial averaging of the profile
grid, not done in the wintertime inversion height estima-
tion, was needed to minimize isolated, single-cell terrain
discontinuities that did not appear to represent significant
blocking features, such as small escarpments in otherwise
gently rolling terrain (Table II).

The PRISM input grid of ‘significant’ terrain features
for orographic precipitation is shown in Figure 6. Effec-
tive terrain heights of less than 75 m were treated as
having insignificant orographic profiles, those between
75 and 250 m as two-dimensional/three dimensional
(2D/3D) transitional profiles, and those exceeding 250 m
as fully 3D profiles (Appendix C). A firm threshold for
effective terrain height that discerns 2D from 3D features
has not yet been established, primarily because of limited
observational data, weaknesses in our understanding of
how small terrain features impact precipitation patterns,
and the likelihood that the threshold varies somewhat
from region to region.

4.3. Inter-cell processing

Once PRISM calculated climate estimates for each cell
in the domain, the full grid was subjected to a final set of
operations designed to ensure spatial consistency among
grid cells. A climate–elevation gradient was calculated
between each grid cell and its neighbour, and subjected
to upper and lower slope bound checks like those used
in the target pixel climate–elevation regression functions
(Daly et al., 2002). If the vertical gradient created by a

pixel and its neighbour exceeded or fell below the user-
specified upper or lower bounds, respectively, the climate
value of each pixel was increased or decreased equally
until the vertical gradient no longer violated the bounds
check.

Finally, precipitation grids were subjected to a variable
filter, designed to ensure a smooth field in low-gradient
areas, without affecting high-gradient areas. For each grid
cell, the filter performed a distance-weighted average of
all surrounding grid cells within 8 km as follows:

x =

n∑
i=1

xi

1

di
a

n∑
i=1

1

di
a

(4)

where x is the averaged centre-cell value, xi is the value
at grid cell i, di is the distance between the centre grid cell
and grid cell i, and a is the distance weighting exponent.
Variable filtering was done by varying the exponent a as
a function of the complexity of the field (of x values):

a =
{

amax;�x ≥ �xmax

amax(�x/�xmax); �x < �xmax

}
(5)

where amax is the maximum allowable filtering exponent,
�x is the mean absolute difference between the centre
grid cell and all other grid cells within the specified
radius of influence (an equally weighted average was
used to characterize the field complexity), and �xmax
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Figure 6. Effective terrain grid for the conterminous United States. Black areas denote terrain features that are expected to produce the strongest
terrain-induced (3D) precipitation patterns, and grey areas denote features expected to have some influence on precipitation patterns (2D/3D
transition). Unshaded grid cells as far as 100 km away from the shaded areas may also be considered 3D or 2D/3D transition areas. See text

and Appendix C for discussion.

is the specified maximum average difference. In this
application, amax was set to 4%, and �xmax was set to
4% of the centre-cell value. Therefore, when �x equaled
or exceeded 4% of the centre-cell value, the maximum
distance weighting exponent of 4 was invoked. Below
4%, a was a linear function of the ratio �x to �xmax. An
a of 4 produces a very steep weighting function that gives
an x that is nearly unchanged from the original value, thus
creating little change on the field when it is complex.
An a of zero creates a uniformly weighted average of all
grid cells, which gives maximum smoothing within 8 km.
The �xmax value of 4% was arrived at by attempting to
match the actions of the filter with the spatial coverage of
2D and 3D terrain (Section 4.2.6); the mean inter-pixel
variation was typically greater than 4% in 3D terrain, and
less than 4% in 2D terrain.

4.4. Application, review, and revision

PRISM was applied as described above to produce
draft grids of 1971–2000 mean monthly and annual
minimum and maximum temperature and precipitation.
Model results for all parts of the country were examined
and re-modelled numerous times as modelling and input
data issues were discovered and remedied. Annual grids
of precipitation were obtained by summing the monthly
grids, and annual temperature grids were obtained by
averaging the monthly grids.

No one person or group possesses the most accurate
and detailed knowledge of spatial climate everywhere

within the United States, necessitating the need for exter-
nal review of spatial climate data sets. The goal of the
review process was to ensure that the climate maps rea-
sonably reflected the current state of knowledge regarding
the patterns and magnitudes of precipitation and tem-
perature in the conterminous United States (Daly et al.,
2002). It was not possible to have all the monthly grids
reviewed in a meaningful and time-efficient way, so three
grids thought to adequately represent the range of climatic
conditions and situations experienced across the con-
terminous United States were chosen for review: mean
annual precipitation, January minimum temperature, and
July maximum temperature.

Reviewers were chosen primarily by project managers
at the USDA–NRCS Water and Climate Center, and
included all state and regional climatologists and hydrol-
ogists, as well as other personnel known to have local,
regional, or national expertise in spatial climate patterns
and analysis. The maps and station data were posted to
an internet map server for easy access.

Not surprisingly, reviewers in regions with little terrain
variation were concerned primarily with the quality of the
station data, while those in mountain states commented
mostly on climatic extremes in complex terrain. For
example, in the states in the central plains, reviewers
generally focussed on how station siting and variations
in the period of observational record might affect the
resulting maps. On the East Coast, the New Jersey State
Climatologist believed that the draft PRISM maps did
not show a sufficiently a well-developed coastal strip,
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where temperatures were warmer in winter and cooler
in summer than adjacent inland areas (D. Robinson,
pers. comm.). PRISM’s coastal proximity weighting
exponent was increased to resolve this issue. A U.S.
Forest Service scientist doing field work came across
several U.S. Geologic Survey precipitation gauges on
remote mountaintops in Nevada, and was able to locate
and provide data from them (D. Westfall, pers. comm.).
A Nevada Division of Water Resources scientist was
able to provide precipitation data from a local network
which improved estimates on the eastern slope of the
Sierra Nevada (J. Huntington, pers. comm.). Overall, the
reviews raised important issues, expanded the station data
sets, and improved the final product.

‘Final’ grids were produced on the basis of the reviews
received. The word ‘final’ is given in quotes, because
there have been, and likely will be, small changes made to
these grids as issues are discovered and corrected. Users
can download all the current monthly grids and access a
log of changes at http://prism.oregonstate.edu.

5. Results and performance evaluation

Maps of mean annual precipitation, January minimum
temperature, and July maximum temperature are shown
in Figure 7. Average vertical gradients in precipitation
and temperature are summarized by region in Table V. A
vertical gradient was calculated for each pixel by finding
the average climate–elevation gradient between the pixel
and the four surrounding pixels. The vertical gradients
among pixels reported here, and in the PRISM diagnostic
grids shown in subsequent figures, usually do not match
the weighted regression slopes calculated by PRISM.
This is especially true if adjacent pixels are in different
physiographic situations than the target pixel, e.g. a valley
bottom pixel and adjacent hillslope pixels, because the
PRISM regression slope reflects the relationship between
climate and elevation only for stations matching the target
cell’s physiographic characteristics.

While the maps in Figure 7 do not show much detail
at this scale, some features are notable. Rain shadows
downwind of the coastal, Olympic, Cascade, and Sierra
Nevada ranges are visible, as are increases in precipita-
tion over most elevated terrain, including the Appalachian
Mountains. Over orographically significant terrain fea-
tures (denoted 3D terrain in Figure 6), precipitation
increased by about 70–75% of the estimated cell value
per kilometre elevation in the western and central United
States, and about 50% in the eastern United States
(Table V). The mean increase in precipitation over all
terrain was much lower than for 3D terrain only, espe-
cially in the centre and east, where much of the terrain
is not orographically significant.

January minimum temperature exhibited very complex
patterns in the western United States, characterized
by numerous cold ‘ponds’ in valleys and depressions:
temperatures were relatively mild along the ocean and
Great Lakes coastlines. The mean rate of change with

Table V. Vertical gradients in temperature and precipitation,
summarized by effective terrain height (precipitation) and layer

(temperature).

Element Region

West Cent East

Mean annual precipitation
3D terrain precipitation gradient (%/km) 75.45 71.02 50.71
Overall precipitation gradient (%/km) 55.42 7.14 11.93

January minimum temperature
Layer 1 temperature gradient (°C/km) 2.33 −0.82 −2.83
Layer 2 temperature gradient (°C/km) −2.45 −0.60 −1.65
Overall temperature gradient (°C/km) 1.15 −0.79 −2.80

July maximum temperature
Layer 1 temperature gradient (°C/km) −5.74 −4.11 −3.78
Layer 2 temperature gradient (°C/km) −7.50 −7.68 −7.42
Overall temperature gradient (°C/km) −6.32 −4.21 −3.89

elevation was actually positive in layer 1 (white areas
in Figure 6) in the western United States, reflecting
the dominance of temperature inversions in this region
(Table V). The July maximum temperature exhibited a
strong decrease with elevation across most of the country.
Coastal areas were cooler than inland areas, especially
where the water temperature was significantly cooler than
that of the land, such as along the West Coast. Regionally
averaged vertical gradients were all negative, but positive
gradients were common within the marine layer (layer 1)
along most coastlines, including those in the central and
eastern United States. Some of these features will be
discussed in greater detail in subsequent sections.

5.1. Statistical uncertainty analysis
Estimating the true errors associated with spatial climate
data sets is difficult and subject to its own set of errors
(Daly, 2006). This is because the true climate field is
unknown, except at a relatively small number of observed
points, and even these are subject to measurement and
siting uncertainties.

5.1.1. Cross-validation error

A performance statistic often reported in climate inter-
polation studies is the cross-validation (C-V) error (Daly
et al., 1994; Willmott and Matsuura, 1995; Gyalistras,
2003). C-V error is a measure of the difference between
one or more station values and the model’s estimates for
those stations, when the stations have been removed from
the data set. In the common practice of single-deletion
jackknife C-V, the process of removal and estimation is
performed for each station one at a time, with the sta-
tion returned to the data set after estimation. Once the
process is complete, the overall error statistics, such as
mean absolute error (MAE), bias, and others, are calcu-
lated (e.g. Willmott et al., 1985; Legates and McCabe,
1999). The obvious disadvantage to C-V error estima-
tion is that no error information is provided for loca-
tions where there are no stations. In addition, the single-
deletion jackknife method favours interpolation models
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Figure 7. Conterminous U.S. maps of PRISM 1971–2000 mean annual precipitation, January minimum temperature, and July maximum
temperature. This figure is available in colour online at www.interscience.wiley.com/ijoc

and parameterizations that heavily smooth the results and
reduce local detail, so that deletion of one station is rela-
tively unimportant to the stability of the estimate. Other
deletion schemes, such as withholding a group of data
points from the analysis, may sometimes be useful in
detecting certain weaknesses in the interpolation, but may
not give an accurate overall error estimate. For example,
withholding high-elevation stations may help determine

how well the system can extrapolate beyond the elevation
range of the data.

5.1.2. Prediction interval

Climate interpolation models themselves typically pro-
vide few realistic estimates of error because these esti-
mates rely at least partly on the very same assump-
tions used in the interpolation process itself and are
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therefore neither independent nor reliable. These error
statistics should only be used in a relative sense, with the
same model and station data set, and interpreted against
the backdrop of model assumptions. However, modelled
errors can be useful because they provide information at
all grid cells, not just at station locations. The key to
assessing the usefulness of modelled errors is to deter-
mine how and to what extent they rely on model assump-
tions, and assess how they compare with C-V errors.

Perhaps the most useful estimate of uncertainty pro-
duced by PRISM is the regression prediction interval.
Since PRISM uses weighted linear regression to estimate
precipitation or temperature as a function of elevation,
standard methods for calculating prediction intervals for
the dependent variable (Y ) are used. Unlike a confidence
interval, the prediction interval takes into account both
the variation in the possible location of the expected value
of Y for a given X (since the regression parameters must
be estimated), and variation of individual values of Y

around the expected value (Neter et al., 1989). The for-
mula used for calculating the variance of Y (temperature
or precipitation) for a new value of X = Xh (elevation)
is:

s2{Yh(new)} = s2{Ŷh} + MSE = MSE

×


1 + 1

n∑
i=1

wi

+ (Xh − X)2

n∑
i=1

(wiXi − X)2


(6)

where s2{Ŷh} is the estimated variance of the expected
value of Yh at X = Xh, MSE is the regression mean
square error, X is the weighted mean elevation of the
regression data set, and Xi and wi are the elevation and
weight for station i, respectively (Neter et al., 1989). The
prediction interval at significance level α was created as:

Ŷh ± t1−α/2,df s{Ŷh} (7)

where t1−α/2,df is the 1 − (α/2) percentile value of the
t distribution with df degrees of freedom for MSE. A
(1 − α) of 0.70 (70%) was chosen for the prediction
interval because it approximated one standard deviation
(where (1 − α) = 0.67) around the model prediction.
Many model-based uncertainty estimates assume that
the model is perfect, and therefore underestimate the
uncertainty. For example, the kriging estimation variance
assumes the correctness of a simple semi-variogram
model, and does not incorporate any uncertainty related
to model goodness of fit (Daly, 2006). The PRISM 70%
prediction interval, hereafter referred to as PI70, does
include this important source of variability.

As with any error estimate, PI70 has its strengths
and weaknesses. A major strength is that PI70 is large
when there is a high degree of scatter about the local
regression line, indicating a poor relationship between

climate and elevation and suggesting a poor predic-
tion. This tends to occur at locations far from stations,
in areas within transition zones between two or more
climatic regimes (such as coastal temperature bound-
aries or rain shadows), or at elevations in the vertical
transition between the boundary layer and free atmo-
sphere during temperature inversions. PI70 also increases
the farther the prediction is extrapolated away from
the mean regression elevation. This is seen in high
mountain areas that are well above the highest stations
in the vicinity, and therefore have uncertain predic-
tions.

Unfortunately, the spatial patterns of PI70 are also
sensitive to the way in which PRISM is parameter-
ized to weight stations. For example, the presence
of atmospheric-layer weighting produces PI70 patterns
that may be highly discontinuous in space, owing to
markedly different stations being used above and below
the inversion height. Without layer weighting, PI70 pat-
terns become smoother and more generalized in space.
In another example, the use of a minimum radius of
influence, rm (discussed in Section 4.2.1) affects PI70
patterns. When rm is set to zero, PI70 at pixels con-
taining station locations is reduced to near zero because
the co-located stations dominate the weighted regression.
However, when rm is set to 7–10 km (as was done for
this data set) and there are several nearby stations, PI70
may not be reduced to zero because the weight of the
co-located station does not dominate the regression func-
tion. In essence, attempts to reduce bull’s eyes and other
isolated features in the interpolated field will often result
in increased PI70 values.

Finally, station weighting can often confound the effect
that df (degrees of freedom) has on PI70. Statistically, as
df decreases, PI70 increases. Therefore, in areas where
there are few stations, the prediction interval should
widen, reflecting a more uncertain prediction. However,
PRISM is parameterized to successively increase its
radius of influence until it retrieves a specified minimum
number of stations for the regression function; this
minimum number is 15 stations for temperature and 40
for precipitation. Therefore, df is always relatively high.
However, station-weighting may favour only a handful of
those stations with very large weights, leaving the others
with vanishingly small weights, producing a regression
function with what is effectively very few stations (and
usually limited scatter), but retaining the high df value.

A major weakness of both C-V error estimates and
PI70, and which is somewhat counterintuitive, is that
these error measures typically increase as the station
data set becomes more comprehensive (Daly, 2006).
For example, a low-elevation data set that does not
resolve high mountain features may be easy to estimate
and produce little scatter about the regression lines, but
produce very poor estimates in the mountains. In contrast,
a station data set that spans a wide range of elevations
and samples more of the true variability in the climate
field would produce improved estimates, but likely be
more challenging for the model to simulate, resulting in
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higher C-V errors and more scatter about the regression
lines.

5.1.3. Comparison of cross-validation errors and
prediction intervals

C-V error and PI70 statistics for all months are summa-
rized by region in Table VI, and illustrated spatially for
mean annual precipitation, January minimum tempera-
ture, and July maximum temperature in Figures 8 and 9.
C-V biases were very small for all the three climate ele-
ments (not shown), less than 1 mm for precipitation and
0.13 °C for temperature; this indicates that values were
not systematically over- or under-predicted. In general,
regional mean C-V MAE and PI70 were surprisingly
similar and were highest in the physiographically com-
plex western United States (Table VI). For precipitation,
C-V MAE and PI70 values in the western region were
highest in winter and lowest in summer, owing to the
predominance of winter-wet and summer-dry conditions
over much of the area. C-V MAE for precipitation was
somewhat higher in winter than PI70. Annually, both C-V
MAE and PI70 were approximately 11% of the predicted
grid cell value (not shown). In the central and eastern
regions, PI70 was slightly higher than C-V MAE in most
months. Annually, both PI70’s and C-V MAEs were
about 5% of the predicted grid cell value in the central
region and about 4% in the east. The spatial distribution
of percent C-V MAEs clearly shows a concentration of
relatively large errors in the western mountains and in
arid regions, with a few larger errors in the Appalachian
Mountains (Figure 8).

C-V MAEs and PI70’s for minimum temperature were
generally higher than those for maximum temperature,
likely a result of the increased complexity of the eleva-
tion regression function. In the West, minimum temper-
ature C-V MAEs and PI70’s exceeding 1 °C were not
uncommon, while those for maximum temperature aver-
aged about 0.7 °C (Table VI). Central and eastern errors
were similar, and ranged from 0.6 to 0.8 °C for minimum
temperature and about 0.5 °C for maximum temperature.
Winter errors were slightly higher than summer errors.
The spatial distribution of January minimum temperature
errors was characterized by large errors in the western
United States, but there were a significant number of
larger errors in the central and eastern United States,
as well (Figures 8(b) and 9(b)). This reflected the high
spatial variability of minimum temperature, even in rela-
tively gentle terrain. Relatively few stations showed large
C-V MAEs for July maximum temperature (Figures 8(c)
and 9(c)). However, large errors were found in mountain-
ous areas of the West, as well as in coastal areas adjacent
to the Pacific and Atlantic Oceans and Great Lakes. Dur-
ing summer, water temperatures are significantly lower
than land temperatures in these areas, creating large tem-
perature gradients across short horizontal distances (Daly,
2006).

The similarity of the C-V MAE and PI70 error esti-
mates seems to lend support to the idea that the PI70 is
a reasonable substitute for C-V MAE between stations,

at least at the regional level. To determine how well the
two error estimates agree at sub-regional scales, the west-
ern United States was subdivided into regular grids with
successively smaller cell sizes (500, 400, 300, 200, and
100 km) and the average C-V MAE and PI70 estimates
for mean annual precipitation, January minimum tem-
perature, and July maximum temperature compared at
each scale. Figure 10 shows the change in R2 of a lin-
ear regression between the mean C-V MAE and PI70 as
the averaging scale changed. At small averaging scales,
R2 was relatively low (0.2–0.5), indicating that there
was relatively poor agreement between C-V MAE and
PI70 within small areas. However, as the size of the
area increased, R2 increased rapidly, reaching maxima
of 0.75–0.85.

5.2. Comparison with other data sets

PRISM spatial climate data sets were compared to two
other spatial climate data sets of similar resolution
for the conterminous United States: Daymet (Thornton
et al., 1997) and WorldClim (Hijmans et al., 2005). The
Daymet data set spans the conterminous United States
at a resolution of 1 km, and has an averaging period of
1980–1997. Approximately 6000 stations from the NWS
COOP and USDA NRCS SNOTEL networks were used
in the interpolation. Interpolation was performed with the
Daymet model (Thornton et al., 1997). Daymet develops
local linear relationships between climate and elevation
for each grid cell on a DEM, using data from surrounding
stations. Each station is weighted only by its distance
from the target grid cell. This method takes into account
the elevational variation of climate, but does not have the
ability to simulate non-monotonic relationships between
climate and elevation, such as temperature inversions, and
does not explicitly account for terrain-induced climatic
transitions or coastal effects (Daly, 2006). Daymet data
sets can be accessed online at www.daymet.org.

The WorldClim data set is global in extent, and has a
resolution of 30 arcsec. Station data used in the con-
terminous United States were largely restricted to the
USHCN (Williams et al., 2004), which is the U.S. por-
tion of the Global Historical Climate Network (GHCN).
The USHCN consists of about 1200 COOP stations
with long-term records. Averaging period for the data
varied, but was typically 1950–2000. The WorldClim
data set was interpolated with ANUSPLIN (Hutchin-
son, 1995), a method that fits thin-plate splines (usu-
ally second- or third-order polynomials) through station
data in three dimensions: latitude, longitude, and ele-
vation. As with Daymet and PRISM, the relationship
between the climate variable and elevation can vary in
space, making the method suitable for large domains.
Because a spline is by definition smoothly varying, this
approach has difficulty simulating sharply varying cli-
mate transitions, which are characteristic of tempera-
ture inversions, rain shadows, and coastal effects (Daly,
2006). WorldClim data sets can be accessed online at
www.worldclim.org.
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Figure 8. PRISM mean absolute cross-validation errors (MAE) for 1971–2000 mean: (a) annual precipitation; (b) January minimum temperature;
and (c) July maximum temperature. Station density was too high to be shown clearly, requiring that 80% of the stations be randomly omitted

from the plots.

A conterminous U.S. comparison between PRISM and
these two data sets is given below, followed by detailed
comparisons at three locations: Washington’s Olympic

Mountains (annual precipitation); Gunnison Valley, Col-
orado (January minimum temperature); and the central
California coast (July maximum temperature).

Copyright  2008 Royal Meteorological Society Int. J. Climatol. (2008)
DOI: 10.1002/joc



C. DALY ET AL.

Table VI. PRISM cross-validation and PI70 statistics for precipitation and minimum and maximum temperature for the western,
central, and eastern regions. MAE is the mean absolute (unsigned) difference between the prediction and observation during
single-deletion jackknife cross-validation, and PI70 is the mean 70% prediction interval of the PRISM climate-elevation regression

function.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Precipitation
West
MAE (mm) 12.59 11.49 11.20 7.68 6.48 4.68 4.80 4.76 5.23 6.76 10.84 11.66
PI70 (mm) 8.53 7.65 7.70 5.76 5.41 4.29 4.41 4.33 4.29 5.10 7.62 8.08

Central
MAE (mm) 3.48 3.30 4.38 4.80 5.77 5.97 6.14 5.73 5.06 4.48 4.13 3.68
PI70 (mm) 4.29 3.91 5.08 5.48 6.74 7.32 7.39 6.87 6.34 5.28 4.89 4.47

East
MAE (mm) 5.65 4.72 5.58 5.06 5.90 6.51 7.24 6.86 5.96 4.87 5.20 5.31
PI70 (mm) 6.57 5.37 6.29 5.79 6.75 7.96 8.80 8.42 7.41 5.75 6.01 6.18

Minimum temperature
West
MAE (C) 1.12 1.09 0.99 0.96 1.04 1.19 1.32 1.35 1.35 1.28 1.13 1.16
PI70 (C) 1.34 1.12 1.11 1.11 1.12 1.13 1.14 1.14 1.15 1.14 1.13 1.14

Central
MAE (C) 0.75 0.72 0.61 0.56 0.57 0.58 0.60 0.62 0.66 0.73 0.66 0.70
PI70 (C) 0.95 0.92 0.78 0.71 0.70 0.67 0.69 0.73 0.77 0.88 0.82 0.89

East
MAE (C) 0.72 0.69 0.62 0.62 0.63 0.60 0.60 0.63 0.67 0.76 0.65 0.64
PI70 (C) 0.96 0.95 0.85 0.81 0.81 0.76 0.74 0.78 0.84 0.96 0.85 0.86

Maximum temperature
West
MAE (C) 0.75 0.74 0.74 0.71 0.71 0.73 0.77 0.75 0.73 0.70 0.68 0.73
PI70 (C) 0.85 0.83 0.79 0.70 0.69 0.71 0.72 0.70 0.69 0.68 0.74 0.82

Central
MAE (C) 0.56 0.55 0.54 0.50 0.46 0.44 0.43 0.43 0.46 0.46 0.44 0.47
PI70 (C) 0.78 0.77 0.74 0.60 0.55 0.52 0.51 0.51 0.54 0.54 0.60 0.67

East
MAE (C) 0.49 0.48 0.49 0.49 0.47 0.45 0.43 0.41 0.44 0.44 0.36 0.38
PI70 (C) 0.71 0.70 0.68 0.59 0.54 0.51 0.47 0.46 0.48 0.51 0.52 0.58

5.2.1. Conterminous United States

Differences between PRISM and Daymet and World-
Clim for mean annual precipitation, January minimum
temperature, and July maximum temperature are shown
in Figures 11, 12, and 13, respectively. Differences were
found in most areas of the United States, with the largest
occurring in the West. For mean annual precipitation,
Daymet tended to be drier than PRISM in some locations
and wetter in others. In general, Daymet did not resolve
rain shadows well, owing to an inability to recognize
topographic facets, causing it to be too wet on leeward
slopes and sometimes too dry on windward slopes (see
Section 5.2.2 for an example). WorldClim was much drier
than PRISM, especially at higher elevations. The use of
only GHCN stations, which are located mainly at low
elevations, rendered the WorldClim analysis far too dry
in most mountainous areas. To quantify this dry bias,
mean annual precipitation observed at 638 SNOTEL sta-
tions was compared to estimated values at the grid cell
centres closest to the station locations. The WorldClim
dataset had an overall bias of −25%, and underpredicted

one-fifth of the SNOTEL stations by 40% or more. In
contrast, the Daymet and PRISM data sets, which incor-
porated SNOTEL stations, had biases of −2% and 0%,
respectively.

For January minimum temperature, WorldClim was
generally cooler than PRISM, possibly caused by differ-
ences in the averaging period (1950–2000 was generally
cooler than 1971–2000). Both Daymet and WorldClim
were cooler in the mountains and warmer in the val-
leys than PRISM, sometimes substantially so. This was
caused mainly by the inability of the Daymet and World-
Clim data sets to recognize inversions, to weight stations
by susceptibility to cold air drainage, and to adequately
simulate rapid reversals in temperature gradients caused
by cold air drainage and inversions. These topographic
cold biases are discussed more fully in Section 5.2.3.

Differences between PRISM and Daymet and World-
Clim were relatively small for July maximum tempera-
ture, except for the Pacific Coast, where a lack of coastal
proximity weighting limited the ability of Daymet and
WorldClim to recognize the difference between coastal
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Figure 9. Seventy percent prediction intervals (PI70) for: (a) mean annual precipitation; (b) January mean minimum temperature; and (c) July
mean maximum temperature. PI70 for precipitation is expressed as a percentage of the pixel’s value.

and inland stations. These issues are discussed in more
detail in Section 5.2.4.

The flatter terrain of the eastern United States reduced
the differences associated with the interpolation method,
and shifted the focus to station data quality as a significant
error source. Many of the bull’s eyes in the difference
maps (Figures 11–13) are the result of differences in
stations used, or different values used for the same
station. However, differences among the three methods
did occur in the eastern United States. For example, a cold
bias in January minimum temperature was seen along
coastlines, especially in the Great Lakes region. Here,
the influence of the relatively warm waters of the Great
Lakes resulted in milder winter minimum temperatures
than those of inland areas. WorldClim, which did not
recognize coastal zones and had limited station data,

suffered from the greatest cold bias, averaging a 1.6 °C
underestimation of January minimum temperature for 20
coastal stations in the Great Lakes area.

5.2.2. Olympic Mountains precipitation

A detailed look at the differences in mean annual pre-
cipitation between PRISM and Daymet and WorldClim
for Washington’s Olympic Mountains is presented in
Figures 14 and 15. In western Washington, moisture-
bearing winds from the southwest produce precipitation
maxima of 6000–7000 mm/yr or greater on the wind-
ward slopes near the Olympic crest, and develop a sharp
rain shadow on the northeastern slopes, where precipi-
tation drops rapidly to less than 500 mm/yr. There are
few precipitation stations in the vicinity, and none in the
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Figure 10. (a) Scatterplot of the relationship between C-V MAE
and PI70 for mean annual precipitation (given in percentage of the
estimated grid cell value) when averaged over 300 × 300-km blocks
in the western United States; and (b) R2 of the linear relationships
between CV-MAE and PI70 for mean annual precipitation, January
minimum temperature, and July maximum temperature at block sizes
ranging from 100 to 500 km in the western United States. This figure

is available in colour online at www.interscience.wiley.com/ijoc

core mountain area, making this a challenging region to
interpolate.

As an independent evaluation of the precipitation
fields, observed runoff data from USGS gauges (USDOI-
USGS, 2007) were obtained for eight basins, four on
the windward slope and four on the leeward slope.
Runoff periods of record were 1971–2000 for all basins,
except for the Queets (1975–2000) and the Quilcene
(1995–2000). A certain amount of precipitation is lost
to ET before it reaches the gauge outlet. Pan evapora-
tion observations range from 625 to 750 mm annually
in this region. A pan coefficient of 0.8 for this area
(Farnsworth et al., 1982) yields a range of potential evap-
otranspiration (PET) values of 500–600 mm/yr. Given
that the region’s evergreen coniferous forests have the
ability to transpire year round, actual ET is likely a
large proportion of the PET on an annual basis. Hence,
an ET estimate of 500 mm/yr seems reasonable. This
value has been adopted as a rough approximation by
the National Weather Service’s Northwest River Fore-
cast Center for water balance calculations in this area
(D. Laurine, pers. comm.), and is thought to be accurate
to within about 30%.

Basin RO + ET values in Figure 14 (upper left panel)
show the sharp decline in moisture between windward
and leeward basins. A comparison of basin-mean precip-
itation for the three data sets is presented in the remaining
three panels of Figure 14, and a profile of the com-
parisons is shown in Figure 15. Daymet simulated the
windward basins well, but at the expense of the leeward
side, which was substantially overestimated. WorldClim
was quite low on the windward side, and somewhat high
on the leeward side. PRISM simulated both the windward

Figure 11. Daymet/PRISM and WorldClim/PRISM ratio maps (expressed as percentage) of mean annual precipitation for the conterminous
United States. This figure is available in colour online at www.interscience.wiley.com/ijoc
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Figure 12. Daymet – PRISM and WorldClim – PRISM difference maps of mean January minimum temperature for the conterminous United
States. This figure is available in colour online at www.interscience.wiley.com/ijoc

Figure 13. Daymet – PRISM and WorldClim – PRISM difference maps of mean July maximum temperature for the conterminous United States.
This figure is available in colour online at www.interscience.wiley.com/ijoc

and leeward basins reasonably well. Only the PRISM data
set simulated the sharp decline in precipitation between
windward and leeward basins.

PRISM diagnostic grids are shown in Figure 16. By
allowing PRISM to separate stations on each exposure in
the regression function, topographic facet weighting was
largely responsible for PRISM’s ability to simulate the

sharp divide between windward and leeward precipita-
tion in the Olympics. Further station weighting using the
trajectory model output for coastal proximity reinforced
the drying trend from southwest to northeast. Vertical
precipitation gradients were highest around the fringes
of the mountains, often exceeding 150% of the pixel
precipitation value per kilometre. In the core mountain
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Figure 14. Upper left panel: annual RO + ET (runoff + evapotranspiration), a water balance approximation of total precipitation, for selected
basins in Washington’s Olympic Mountains, colour-coded following the precipitation legend. ET was roughly estimated at 500 mm/yr for all
basins. Remaining panels: WorldClim, Daymet, and PRISM mean annual precipitation grids, with basin overlays, also colour-coded following the
precipitation legend. To agree with the basin water balance estimates, the mean grid colour within a basin should match that shown in the upper left
panel. Stations used in the PRISM analysis are shown as black dots. This figure is available in colour online at www.interscience.wiley.com/ijoc

region, gradients were typically 50–100% per km, but
these numbers are suspect because of poor station cov-
erage. PI70 values were generally less than 30% of the
pixel precipitation value, which seems too low for this
region. As discussed earlier, PI70 is a measure of regres-
sion function scatter; sparse station coverage probably
resulted in an underestimate of this scatter by not reflect-
ing the true complexity of the precipitation field.

5.2.3. Gunnison Valley and vicinity

A comparison of January minimum temperature for the
Gunnison Valley, Colorado, and vicinity is shown in
Figures 17–18. This is an area of strong and persistent

inversions during winter, caused by cold air settling into
protected valleys during frequently dry and calm nights.
A typical minimum temperature profile begins with cold
temperatures in valley bottoms, a strong increase in tem-
perature to the top of the inversion at approximately
mid-slope, followed by a decrease in temperature above
the inversion, resulting in temperatures at the high-
est elevations approaching those in the valley bottoms.
Using inversion height, topographic position, and ele-
vation weighting functions, PRISM simulated this com-
plex relationship between temperature and elevation in a
realistic manner, with a well-developed inversion layer
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Figure 15. Estimated mean annual precipitation from WorldClim,
Daymet, PRISM, and RO + ET (runoff + evapotranspiration), a water
balance approximation of total precipitation, for river basins on
the windward and leeward slopes of the Olympic Mountains. ET
is assumed to be 500 mm for all watersheds. Runoff periods of
record are 1971–2000, except for 1975–2000 on the Queets and
1995–2000 on the Quilcene. This figure is available in colour online

at www.interscience.wiley.com/ijoc

in the protected Gunnison Valley and adjacent valleys
(Figure 17). PRISM diagnostic grids show an estimated

inversion height, separating layers 1 and 2, at approxi-
mately mid-slope above the valley floors (Figure 18). The
topographic index grid depicts valley floors as most sus-
ceptible to cold air drainage (white and light grey). The
vertical temperature gradient grid shows a distinct sign
reversal, from highly positive below the inversion height
to negative above. As might be expected, PI70 estimates
exceeded 3 °C in the uncertain transition between the two
layers where scatter in the regression function was great-
est, and fell to 1.5 °C or less in the valleys and in the
mountains.

Daymet was not able to simulate inversion conditions
at all, despite incorporating a station data set similar to
PRISM, because of its assumption of a monotonic, lin-
ear temperature–elevation relationship. The result is little
spatial variation of temperature, and a cold bias at higher
elevations. This high-elevation cold bias occurs when the
incorrect assumption is made that temperature decreases
with elevation from the cold valley floors to the moun-
tains above. WorldClim, further hampered by sparse sta-
tion data, also could not simulate the inversion conditions
and had an even more pronounced cold bias than Daymet.

Cold biases of the Daymet and WorldClim data sets
in western Colorado are illustrated in Figure 19. Here,
369 stations were grouped into four topographic index

Figure 16. PRISM diagnostic grids associated with mean annual precipitation for the Olympic Mountains, Washington: (a) topographic facet grid
at a filtering distance of 36 km; (b) PW coastal proximity, which describes a straight line, approximately southwesterly path length from the
coastline in km, modified by terrain blockage; (c) vertical precipitation gradient, expressed as a percentage of the pixel’s value per kilometre;

and (d) 70% prediction interval (PI70), expressed as a percent of the pixel’s value.
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Figure 17. Comparison of PRISM, Daymet, and WorldClim January mean minimum temperature grids for the Gunnison Valley region,
CO. Stations used in the PRISM interpolation are shown as red dots in the PRISM panel. This figure is available in colour online at

www.interscience.wiley.com/ijoc

bins, and departures of each data set’s grid cell value
from the accompanying observation averaged over these
bins. Stations with high topographic indexes were sit-
uated on locally elevated terrain, and those with low
indexes were in local valley bottoms. The PRISM data
set incorporated all these stations accurately, and showed
little bias. Despite incorporating most of these stations,
the Daymet data set underestimated temperatures on ele-
vated terrain by an average of about 2 °C. WorldClim,
which incorporated selected COOP stations only, sub-
stantially underestimated temperatures at all but valley
bottom sites. The cold bias averaged nearly 4 °C in the
400–600-m topographic index bin, (with some underes-
timates as high as 10 °C), and about 3 °C in the >600 m
bin. A slight improvement in the estimation of temper-
atures by WorldClim and Daymet between the 400–600
and >600 m bins may have been due to the fact that
stations located near the top of inversions, and often the

warmest in the vicinity, were located primarily within
the 400–600 m bin. Above this level, temperatures gen-
erally decreased with elevation, to reach levels similar
those in the valley bottoms where elevations were high
enough.

Cold biases in interpolating minimum temperature
were not confined to the winter months. For example,
WorldClim and Daymet underpredicted July minimum
temperature by an average of about 2 °C for stations
in the 400–600-m topographic index bin. Nighttime
temperature inversions are widespread over the western
United States all times of the year, and tend to occur
most frequently in seasons dominated by clear, calm
weather.

5.2.4. Central California coast

A comparison of July mean maximum temperature
grids for the central California coast is shown in

Copyright  2008 Royal Meteorological Society Int. J. Climatol. (2008)
DOI: 10.1002/joc



PHYSIOGRAPHICALLY SENSITIVE MAPPING OF CLIMATOLOGICAL TEMPERATURE AND PRECIPITATION

Figure 18. PRISM diagnostic grids associated with January mean minimum temperature interpolation for the Gunnison Valley region, CO:
(a) inversion layer; (b) topographic index; (c) vertical temperature gradient; and (d) 70% prediction interval (PI70).

Figure 19. Biases between grid-cell estimates and observed 1971–2000
mean January minimum temperatures (estimate – observation), grouped
by topographic index, for 369 stations in western Colorado. Stations
with high topographic indexes are on locally elevated terrain, and those
with low indexes are in local valley bottoms. Stations with moderate
indexes (300–500) are neither in local valley bottoms nor on locally

elevated terrain.

Figures 20–22. In summer, Pacific Ocean temperatures
are much cooler than over land, resulting in strong tem-
perature gradients from the coast inland. The summer
daytime temperature regime of a location is strongly
influenced by elevation (more specifically, its vertical
position relative to the marine inversion) and exposure to
maritime air mass penetration. Cool oceanic air concen-
trated at the surface undercuts warmer air aloft, forming a

marine inversion. Terrain-blocking of maritime air mass
penetration inland can be significant, especially if the
height of the barrier exceeds the height of the marine
inversion. The approximate height of the marine inver-
sion and patterns of maritime air penetration are shown
in Figure 21. The PRISM data set simulates the result-
ing complex temperature pattern in a realistic way. The
coolest temperatures are confined to the immediate coast
when terrain blocks inland penetration, but are allowed to
extend inland where terrain gaps are present. The Big Sur
area between King City and the coast is an example of a
very thin coastal strip confined by a significant mountain
barrier; high temperatures dominate just a few kilome-
tres from the coastline (Figure 20). King City itself is
in the Salinas Valley, a well-known conduit for marine
air penetration via the Monterey Bay. Vertical temper-
ature gradients were primarily positive along the coast,
due to the marine inversion, but reverted to generally
negative inland (Figure 21). PI70 values were generally
0.5–1.5 °C, except for sharp marine/non-marine transition
areas, such as along the inversion height boundaries and
near significant terrain barriers, where values exceeded
2 °C.

Daymet did not simulate July maximum temperature
well in this region. The temperature field appeared heav-
ily smoothed, with temperatures overestimated by 3–5 °C
along the coast and underestimated by 5–10 °C inland.
There was no recognition of coastal proximity or of the
marine inversion. WorldClim did somewhat better along
the coast, more accurately defining the cooler Salinas
Valley, for example. However, a lack of information
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Figure 20. Comparison of PRISM, Daymet, and WorldClim July mean maximum temperature grids for the central coast, CA. This figure is
available in colour online at www.interscience.wiley.com/ijoc

about coastal proximity and the marine inversion pro-
duced underestimates of inland temperatures by 3–10 °C.
Biases in July maximum temperature were quantified by
comparing the observed and estimated temperatures at
1201 stations in California, grouped by coastal proximity.
The coastal proximity index is not perfect in its depic-
tion of coastal influence, but, in general, stations with low
coastal proximity indexes experienced a relatively strong
marine temperature influence during summer, and those
with high indexes experienced relatively little influence.
A strong overestimation of temperatures at immediate
coastal sites is apparent for Daymet and WorldClim in
Figure 22, with Daymet’s warm bias reaching nearly 3 °C
along the immediate coastline. In contrast, inland stations
that experienced low to moderate coastal influence were
underestimated.

6. Conclusions

It is clear from this analysis that accounting for physio-
graphic features in the interpolation process resulted in
substantial improvements in the resulting climate grids.
The improvement was highly variable, however, depend-
ing on the complexity of the region and representa-
tiveness of the station data. Regions that do not have
major terrain features and are distant from climatically
important coastlines, such as the Great Plains and flat
areas of the eastern United States, had the simplest
long-term spatial climate patterns. Physiographic effects

were subdued in this area and station data were plen-
tiful, reducing the need for physiographic weighting in
the interpolation process. Near coastlines in flat terrain,
coastal proximity was the main physiographic feature to
be accounted for. Proximity could be reasonably esti-
mated with simple distance measures, taking into account
temperature differences between the open ocean and
bays and inlets. Complex terrain in the eastern United
States exhibited precipitation and temperature patterns
dominated by elevation, requiring interpolation methods
that accounted for elevation effects. Rain shadows and
temperature inversions were not as pronounced as in the
western United States, and these areas were represented
by relatively numerous station data.

Most of the western United States, with its complex
topography and adjacent Pacific Coast, required much
more than basic elevation information for successful cli-
mate interpolation. Precipitation interpolation over many
mountain ranges benefited from PRISM topographic facet
and trajectory-based moisture index station weighting to
realistically simulate sharp rain shadows to the lee of the
mountain crests. Interpolation of minimum temperature,
especially winter minima, benefited from PRISM station
weighting functions that accounted for topographic posi-
tion and the potential for temperature inversions. The
reversal of the temperature–elevation relationship due to
inversions was a particularly challenging situation to sim-
ulate. Maximum temperature, especially during summer,
had a generally strong and monotonic relationship with
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Figure 21. PRISM diagnostic grids associated with July mean maximum temperature interpolation for the central coast, CA: (a) summer inversion
layer, given as layer 1 (within inversion) or layer 2 (above inversion); (b) western temperature (TW) coastal proximity, expressed as the optimal
path length from the coastline in kilometres, accounting for terrain blockage; (c) vertical temperature gradient; and (d) 70% prediction interval

(PI70).

elevation, and therefore was interpolated successfully
over inland areas with elevation information only. The
most difficult area for interpolating summer maximum
temperature was located along, and adjacent to, the
Pacific coastline. Simulation of large land–sea temper-
ature differences combined with a marine inversion ben-
efited from station weighting functions that included
a trajectory-based coastal proximity index and marine
inversion estimates. Again, the reversal of the temper-
ature–elevation relationship near the coast was challeng-
ing to reproduce.

An in-depth performance evaluation was presented
that included attempts to estimate the interpolation error,
and a comparison of PRISM data sets with the Daymet
and WorldClim data sets. PRISM interpolation error was
estimated in two ways: jackknife C-V and the prediction
interval of the climate–elevation regression function at

the 70% significance level (PI70). Both methods had
advantages and disadvantages. C-V provided information
from actual station data, but its purview was limited
to those points only, which was quite limited in data-
sparse areas. PI70 provided information for all grid cells,
but was based on the assumption that the interpolation
error was based solely on the scatter of the data points
around the climate–elevation regression function. There
was an advantage in using both of these methods, in
that they estimated error from very different perspectives.
Although not well correlated point-by-point, the two
measures were found to be reasonably well correlated,
and roughly similar in magnitude, when averaged over
large domains.

The PRISM data set was shown to be a more accurate
representation of the spatial climate patterns in the United
States than the WorldClim and Daymet data sets. The
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Figure 22. Bias between grid-cell estimates and observed 1971–2000
mean July maximum temperatures (estimate – observation), grouped
by coastal proximity (Figure 2(a)), for 1201 stations in California.
Stations with low coastal proximity indexes experience a generally
strong marine temperature influence during summer, and those with
high indexes experience much less of this influence (see Figures 2(a)

and 21(b) for spatial context).

WorldClim and Daymet data sets were somewhat similar
to PRISM in many areas within the eastern United States,
but very different in the western United States. Reasons
stemmed from differences in station data density, QC,
and interpolation methods. WorldClim used only GHCN
stations, which comprised only about 10% of the total
number of stations used in PRISM. Most of these stations
were in valleys, which resulted in substantial underesti-
mates of both precipitation and minimum temperature
in the mountains. WorldClim’s ANUSPLIN interpola-
tion method accounted for direct elevation effects only,
and had difficulty reproducing sharp changes in the rela-
tionship between climate and elevation. Daymet used a
much richer station data set that included many COOP
and SNOTEL sites. However, the Daymet interpolation
method assumed a linear, monotonic relationship between
climate and elevation, and accounted for direct elevation
effects only, which resulted in poor simulation of mini-
mum temperature in the mountains and maximum tem-
perature near the Pacific coast. WorldClim and Daymet
data sets did not account for rain shadows in the lee of
most mountain ranges well, owing to a lack of terrain bar-
rier information. An additional advantage to the PRISM
data set was a peer review procedure that brought sig-
nificant knowledge of regional climate patterns and new
station data sets into the development process.

Future work to improve the PRISM spatial climate
data sets will involve casting an ever-wider net for high-
quality meteorological data in remote or complex areas,
including data from mesonets. Data from offshore buoys
could serve as a useful baseline for along-shore tem-
perature conditions. Additional station-weighting func-
tions under consideration would assess similarities in
land use/land cover types, thereby improving stratifi-
cation of stations in open versus forested locations,
built versus rural settings, etc. However, implementa-
tion would require high-quality spatial information on

historical and current land use/land cover, highly accu-
rate station coordinates for the POR, and generalizable
relationships between variations in land cover and vari-
ations in climate. Additional work needs to be done to
improve estimates of inversion heights, coastal proximity,
and moisture availability, possibly through the use of
more sophisticated models.
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Appendix A

A1. Period of record adjustments to short-term stations

Many stations used in this analysis had a POR with
fewer than 23 years (75% data completeness threshold).
In order to remove temporal biases from these short-
term stations, their POR means were adjusted to the
1971–2000 period. Nearby ‘anchor’ stations with long-
term means were used to adjust the short-term ‘target’
station means. A target station monthly mean was con-
sidered usable (and therefore adjustable) if the mean was
calculated using at least three years of data from the
1971 to 2000 period. A target station monthly mean was
also usable if the target station had at least three years
of historical data, and at least one of these years was
within 23 years of the beginning or end of the 1971–2000
period, which encompasses the years 1948–2003. A tar-
get station monthly mean was not usable if the station had
less than three years of historical data, and no data during
1948–2003. Target station monthly means that could not
be used were omitted from the data set.

Anchor stations were chosen for each target station
using results from the ASSAY QC application using
station POR monthly averages as input (initial spatial
QC step). For each station for each month, ASSAY QC
made a prediction for each target station in the absence of
the target station’s observation. The weights assigned by
ASSAY to surrounding stations in the monthly regression
function for the target station served as measures of the
physiographic similarity of these stations to the target
station. These weights were later used in determining the
most suitable anchor stations.

Potential anchor stations were those having data in
the same years during 1971–2000, which were used
to calculate the target station short-term monthly mean.
For example, if a target station had data for the period
1982–1988, the anchor station must have also had data
for this period. Secondly, anchor stations were chosen
that had data in as many of the additional years outside
1971–2000 where the target station had data, up to a total
of 23 years, if possible. The number of additional years
that could be provided by the anchor station, divided by
the number of years needed to bring the target station
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POR up to 23, was multiplied by the ASSAY weight of
the station to produce a ranking score. Anchor stations
were then sorted on the basis of the highest score, then
highest ASSAY weight, and then the shortest distance to
the target station. The result was a list of preferred anchor
stations, each of which had a set of up to 23 years for
which both the anchor station and target station had data
for a given month.

After selecting an anchor station, monthly extended
means for the target station and anchor station were
calculated using their respective data from the set of
common years. These means were called ‘extended’
because they might have been calculated from a period
of years that extended beyond the target period. For
precipitation, an adjustment factor was calculated by
dividing the anchor station 1971–2000 mean by the
anchor station extended mean. The target station extended
mean was multiplied by this factor to determine the
target station adjusted mean. For maximum and minimum
temperature, an adjustment difference was calculated by
subtracting the anchor station extended mean from the
anchor station 1971–2000 mean. This difference was
added to the target station extended mean to determine
the target station adjusted mean. Arithmetically, the
target adjusted mean (Xt

′
) was calculated as follows for

precipitation:

Xt
′ = Xte

(
Xa

Xae

)
(A1)

and for maximum and minimum temperature:

Xt
′ = Xte + (Xa − Xae) (A2)

where Xa is the anchor mean, Xae is the anchor extended
mean, and Xte is the target extended mean.

Xt
′

was calculated for each target station using the
three anchor stations with the highest scores. These three
adjusted means were then averaged to obtain the final
1971–2000 mean for the target station. The use of three
anchor stations was arrived at by conducting experi-
ments with 84 long-term stations across the United States
for which the true 1971–2000 thirty-year means were
known. These stations were simulated as short-term sites
by reducing their PORs to 5, 11, and 21 years, respec-
tively. Estimates of the 30-year mean were calculated
through the above adjustment procedure using between
one and five anchor stations. Comparison of the esti-
mated and actual 30-year means indicated that the dif-
ferences between the two decreased as the number of
anchor stations increased from one to three, but leveled
off (or actually increased in some cases) as the number of
anchors increased to four and five. As was expected, the
shorter the POR of the short-term station, the larger the
differences, but the mean absolute difference between the
estimated and actual 1971–2000 mean was well below
1 °C (Figure A1).

Figure A1. Mean absolute error of the adjusted mean July maximum
temperature from the known 30-year mean versus number of anchor
stations used to compute the adjusted mean. A total of 84 stations were
tested using short-term periods of record of 5, 11, and 21 years. This
figure is available in colour online at www.interscience.wiley.com/ijoc

Appendix B

B1. PRISM cluster weighting

The PRISM climate–elevation regression function is
populated with data from stations surrounding the tar-
get grid cell that are within a given radius of influence
(described in Daly et al., 2002). Ideally, these stations
would be evenly spaced both horizontally and verti-
cally, so that all areas would be represented equally.
This is rarely the case, however. Stations often occur
in clumps (e.g. populated areas), thereby creating the
potential for overrepresentation in the regression func-
tion. In an attempt to minimize overrepresentation, the
PRISM cluster-weighting algorithm seeks to identify and
reduce the regression weights of stations that are clus-
tered together, so that the cluster as a whole has the
approximate weight of a single station.

How closely spaced can stations be before they are
characterized as representing essentially the same point,
and therefore perceived as clustered? Horizontally, how
we intuitively define a cluster varies with the scale of the
interpolation process, and is best related to the horizontal
radius of influence within which stations are drawn for the
regression function; the larger the radius of influence, the
farther stations can be spaced before they are perceived
to be clustered. Over the past decade of modelling with
PRISM, it has been found that a horizontal separation
distance of less than 20% of the radius of influence
suggests clustering. The radius of influence in PRISM
varies from pixel to pixel, depending on the local density
of stations, but is typically on the order of 30–50 km;
this suggests that a clustering influence will be begin to
be felt at horizontal separations of 6–10 km.

Vertically, the cluster distance threshold represents
how close the elevation stations can be before they
are characterized as representing the same elevation. A
PRISM input parameter, called the elevation precision,
represents the precision to which the station elevations
are given for the regression function. This is used to
keep stations with very small differences in elevation but
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relatively large differences in climate values from unduly
influencing the regression slope. A common value for
the elevation precision is 50 m; this means that station
elevations within 50 m are assumed to be at the same
elevation. This precision was adopted as the vertical
cluster threshold.

For a given station, the cluster weighting factor, Wc,
is calculated as

Wc =
{

1; Sc = 0
1/Sc; Sc > 0

}
(B1)

where Sc, the cluster size (number of effective stations in
cluster), is given as

Sc =
n∑

i=1

hivi (B2)

where n is the number of stations in the regression
data set, and hi and vi are the horizontal and vertical
cluster factors for station i, respectively. These factors
are calculated as follows:

hi =
n−1∑
j=1

{
0; dij > 0.2r
(0.2r − dij )/0.2r; 0 ≤ dij ≤ 0.2r

}
(B3)

where r is the radius of influence and dij is the horizontal
distance between station i and all other stations j in the
regression data set; and

vi =
n−1∑
j=1

{
0; sij > p

(p − sij )/p; 0 ≤ sij ≤ p

}
(B4)

where p is the elevation precision and sij is the vertical
distance between station i and all other stations j in the
regression data set. sij is calculated as

sij =
{

0; |ei − ej | < p

|ei − ej | − p; |ei − ej | > p

}
(B5)

where ei and ej are the elevations of station i and station
j , respectively. Station pairs with elevation differences
within the elevation precision are assumed to have
effectively the same elevation: hence the subtraction of
p from the elevation difference to obtain the effective
separation of the two stations.

Appendix C

C1. PRISM effective terrain height assessment

In the mountainous western United States, terrain is a
dominant factor in the spatial pattern of precipitation.
In flat or gently rolling areas such as the Great Plains,
the role of terrain is more subdued, although variations
in precipitation have been documented over low hills
in Illinois (Changnon et al., 1975) and Sweden (Berg-
eron, 1968), and in narrow valleys in Canada (Longley,
1975). Conceptually, the effectiveness of a terrain feature

in amplifying precipitation depends partially on its abil-
ity to block and uplift moisture-bearing air. This ability
is determined mainly by the profile the feature presents
to the oncoming air flow. Steeply rising features with
continuous ridge lines oriented normal to the flow can
generally be expected to produce greater P–E regression
slopes than low, gently rising features with discontinu-
ous ridge lines oriented parallel to the flow. One might
imagine a spectrum of ‘effective’ terrain heights, ranging
from large features that produce highly 3D precipitation
patterns, to a nearly flat condition which exhibits 2D pat-
terns only. Between these extremes would be a transition
between 2D and 3D patterns, for which P–E slopes would
range from zero to values typical of mountainous areas.

Ideally, the effectiveness of the terrain would be
reflected in the station data, and therefore in the empirical
P–E regression slopes. In reality, the station data are
rarely of sufficient density and reliability to provide such
a detailed and accurate picture. If spatial estimates of the
2D/3D nature of the terrain were available a priori, the
range of allowable P–E slopes could be varied to the
appropriate degree, providing an independent check and
constraint (if necessary) on the empirically-derived P–E
slopes.

The effective terrain height for a pixel is estimated by
a method similar to that used in estimating the potential
wintertime inversion height; the creation of an effective
terrain height grid for the conterminous United States is
described in Section 4 and Table II of this article.

PRISM uses the effective terrain grid in a multi-step
process. A 3D index for the target grid cell (I3c) is
determined by comparing the effective terrain height of
the target cell with thresholds for 2D and 3D model
operation. If the effective terrain height exceeds the 3D
threshold, I3c is set to 1.0. If the effective terrain height is
less than the 2D threshold, I3c is set to 0.0. An effective
terrain height between the two thresholds gives an I3c

between zero and 1. The calculation is as follows:

I3c =



1;hc ≥ h3
hc − h2
h3 − h2

;h2 < hc < h3

0;hc ≤ h2


 (C1)

where hc is the effective terrain height for the target grid
cell, and h2 and h3 are user-defined thresholds for 2D and
3D operation, respectively. At the current time, h2 and
h3 are empirically defined until more robust methods are
developed on the basis of a combination of theoretical
and observational studies.

If I3c < 1, signalling a 2D or 2D/3D mixed situation,
I3a, an areal 3D index, is calculated to assess whether the
target grid cell is near a significant 3D terrain feature.
Precipitation patterns may be affected by the upstream or
downstream effects of mountain barriers, well away from
the barriers themselves (Smith, 1979). Indications of this
phenomena have been observed during our analysis of
observations in many large valleys in the Western United
States, and it appears to extend approximately 100 km
from the nearest 3D terrain features. The 100-km estimate
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is preliminary, and may be updated as more information
is gathered.

I3a is calculated similar to I3c:

I3a =



1; ha ≥ h3
ha − h2
h3 − h2

;h2 < ha < h3

0; ha ≤ h2


 (C2)

where ha is a distance-weighted effective terrain height,
calculated as

ha =

n∑
i=1

wihi

n
(C3)

where hi is the effective terrain height for grid cell i and
n is the number of grid cells within 100 km of the target
grid cell. The weight w for a nearby grid cell i is

wi = 1

di

(C4)

where di is the horizontal distance between the centres
of the target grid cell and nearby grid cell i.

The final 3D index, I3d, is expressed as

I3d = max[I3c, I3a] (C5)

A scalar from 0 to 1, I3d represents the degree of
importance terrain should play in the estimation of pre-
cipitation. When I3d = 1, the PRISM regression function
operates in its normal fashion. As I3d approaches zero,
the influence of terrain is gradually diminished and values
of terrain-related parameters – the minimum, maximum,
and default regression slopes (β1m, β1x, and β1d); and the
elevation, facet and layer weighting exponents (b, c, and
y) – are linearly reduced to zero as a function of I3d (see
Daly et al., 2002, for definitions of PRISM parameters).
When I3d is zero, the slope of the precipitation/elevation
regression function is forced to zero and stations are
weighted by distance, clustering, and coastal proximity
(if enabled) only, resulting in a 2D interpolation.

References

Atkinson DE, Gajewski K. 2002. High-resolution estimation of
summer surface air temperature in the Canadian Arctic Archipelago.
Journal of Climate 15: 3601–3614.

Barnes SL. 1964. A technique for maximizing details in numerical
weather map analysis. Journal of Applied Meteorology 3: 396–409.

Barry RG. 1992. Mountain Weather and Climate. Routledge: London.
Barry RG, Chorley RJ. 1987. Atmosphere, Weather and Climate, 5th

edn. Routledge: London.
Bergeron T. 1968. Studies of the Oreigenic Effect on the Areal fine

Structure of Rainfall Distribution . Meteorological Institute, Uppsala
University, Report No. 6.

Bolstad PV, Swift L, Collins F, Regniere J. 1998. Measured and
predicted air temperatures at basin to regional scales in the southern
Appalachian Mountains. Agricultural and Forest Meteorology 91:
161–176.

Bootsma A. 1976. Estimating minimum temperature and climatological
freeze risk in hilly terrain. Agricultural Meteorology 16: 425–443.

Brosofske KD, Chen J, Naiman RJ, Franklin JF. 1997. Harvesting
effects on microclimatic gradients from small streams to uplands
in western Washington. Ecological Applications 7: 1188–1200.

Changnon SA Jr, Jones DMA, Huff FA. 1975. Precipitation increases
in the low hills of southern Illinois. Part 2. Field investigation of
anomaly. Monthly Weather Review 103: 830–836.

Clements CB, Whiteman CD, Horel JD. 2003. Cold-air-pool structure
and evolution in a mountain basin: Peter Sinks, Utah. Journal of
Applied Meteorology 42: 752–768.

Daley R. 1991. Atmospheric Data Analysis. Cambridge University
Press: Cambridge; 457.

Daly C. 2006. Guidelines for assessing the suitability of spatial climate
data sets. International Journal of Climatology 26: 707–721.

Daly C, Neilson RP, Phillips DL. 1994. A statistical-topographic
model for mapping climatological precipitation over mountainous
terrain. Journal of Applied Meteorology 33: 140–158.

Daly C, Helmer EH, Quinones M. 2003. Mapping the climate of Puerto
Rico, Vieques, and Culebra. International Journal of Climatology 23:
1359–1381.

Daly C, Smith J, McKane R. 2007. High-resolution spatial modeling
of daily weather elements for a catchment in the Oregon Cascade
Mountains, USA. Journal of Applied Meteorology and Climatology
46: 1565–1586.

Daly C, Gibson WP, Taylor GH, Johnson GL, Pasteris P. 2002. A
knowledge-based approach to the statistical mapping of climate.
Climate Research 22: 99–113.

Daly C, Taylor GH, Gibson WP, Parzybok TW, Johnson GL, Pas-
teris P. 2001. High-quality spatial climate data sets for the United
States and beyond. Transactions of the American Society of Agricul-
tural Engineers 43: 1957–1962.

Daly C, Redmond K, Gibson W, Doggett M, Smith J, Taylor G,
Pasteris P, Johnson G. 2005. Opportunities for improvements
in the quality control of climate observations. 15th AMS
Conference on Applied Climatology, American Meteorologi-
cal Society: Savannah, GA, June 20–23, 2005. Paper J3.9.
http://ams.confex.com/ams/pdfpapers/94199.pdf.

Daly C, Kittel TGF, McNab A, Gibson WP, Royle JA, Nychka D,
Parzybok T, Rosenbloom N, Taylor G. 2000. Development of a
103-year high-resolution climate data set for the conterminous
United States. Proceedings of the 12th AMS Conference on Applied
Climatology. American Meteorological Society: Asheville, NC, May
8–11, 249–252.

Davey CA, Pielke RA Sr. 2005. Microclimate exposures of surface-
based weather stations–implications for the assessment of long-term
temperature trends. Bulletin of the American Meteorological Society
86: 497–504.

Dong J, Chen J, Brosofske KD, Naiman RJ. 1998. Modelling air
temperature gradients across managed small streams in western
Washington. Journal of Environmental Management 53: 309–321.

Farnsworth R, Thompson ES, Peck EL. 1982. Evaporation Atlas for
the Contiguous 48 United States . NOAA Technical Report #33.

Funk C, Michaelsen J. 2004. A simplified diagnostic model of
orographic rainfall for enhancing satellite-based rainfall estimates in
data-poor regions. Journal of Applied Meteorology and Climatology
43: 1366–1378.

Geiger R. 1964. The Climate Near the Ground. Harvard University
Press: Cambridge, MA; 611.

Giambelluca TW, Nullet D. 1991. Influence of the trade-wind inversion
on the climate of a leeward mountain slope in Hawaii. Climate
Research 1: 207–216.

Gibson WP, Daly C, Taylor GH. 1997. Derivation of facet grids
for use with the PRISM model. Proceedings of the 10th
AMS Conference on Applied Climatology. American Meteoro-
logical Society: Reno, NV, Oct. 20–23, 208–209. Online at
http://prism.oregonstate.edu/pub/prism/docs/appclim97-facets
-gibson.html.

Gibson WP, Daly C, Kittel T, Nychka D, Johns C, Rosenbloom N,
McNab A, Taylor G. 2002. Development of a 103-year high-
resolution climate data set for the conterminous United States.
Proceedings of the 13th AMS Conference on Applied Climatology.
American Meteorological Society: Portland, OR, May 13–16,
181–183.

Gustavsson T, Karlsson M, Bogren J, Lindqvist S. 1998. Development
of temperature patterns during clear nights. Journal of Applied
Meteorology 37: 559–571.

Gyalistras D. 2003. Development and validation of a high-resolution
monthly gridded temperature and precipitation data set for
Switzerland (1951–2000). Climate Research 25: 55–83.

Hannaway DB, Daly C, Cao W, Luo W, Wei Y, Zhang W, Xu A,
Lu C, Shi X, Li X. 2005. Forage species suitability mapping
for China using topographic, climatic and soils spatial data and
quantitative plant tolerances. Scientia Agricultura Sinica 4: 660–667.

Copyright  2008 Royal Meteorological Society Int. J. Climatol. (2008)
DOI: 10.1002/joc



C. DALY ET AL.

Haugen RK, Brown J. 1980. Coastal-inland distributions of summer air
temperature and precipitation in northern Alaska. Arctic and Alpine
Research 12: 403–412.

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very
high resolution interpolated climate surfaces for global land areas.
International Journal of Climatology 25: 1965–1978.

Hocevar A, Martsolf JD. 1971. Temperature distribution under
radiation frost conditions in a central Pennsylvania valley.
Agricultural Meteorology 8: 371–383.

Hutchinson MF. 1995. Interpolating mean rainfall using thin
plate smoothing splines. International Journal of Geographical
Information Science 9: 385–403.

Johnson GL, Daly C, Hanson CL, Lu YY, Taylor GH. 2000. Spatial
variability and interpolation of stochastic weather simulation model
parameters. Journal of Applied Meteorology 39: 778–796.

Juvik JO, Nullet D, Banko P, Hughes K. 1993. Forest climatology near
the tree line in Hawai’i. Agricultural and Forest Meteorology 66:
159–172.

Legates DR, McCabe GJ. 1999. Evaluating the use of “goodness of fit”
measures in hydrologic and hydroclimatic model validation. Water
Resources Research 35: 233–241.

Lindkvist L, Gustavsson T, Bogren J. 2000. A frost assessment method
for mountainous areas. Agricultural and Forest Meteorology 102:
51–67.

Longley RW. 1975. Precipitation in valleys. Weather 30: 294–300.
Lookingbill T, Urban D. 2003. Spatial estimation of air temperature

differences for landscape-scale studies in montane environments.
Agricultural and Forest Meteorology 114: 141–151.

Mahmood R, Foster SA, Logan D. 2006. The GeoProfile metadata,
exposure of instruments, and measurement bias in climatic record
revisited. International Journal of Climatology 26: 1091–1124.

McCutchan MH, Fox DG. 1986. Effect of elevation and aspect on
wind, temperature and humidity. Journal of Climate and Applied
Meteorology 25: 1996–2013.

Mendonca BG, Iwaoka WT. 1969. The trade wind inversion at the
slopes of Mauna Loa, Hawaii. Journal of Applied Meteorology 8:
213–219.

Milewska EJ, Hopkinson RF, Niitsoo A. 2005. Evaluation of geo-
referenced grids of 1961–1990 Canadian temperature and
precipitation normals. Atmosphere-Ocean 43: 49–75.

Neter J, Wasserman W, Kutner MH. 1989. Applied Linear Regression
Models, 2nd edn. Richard D. Irwin, Inc: Boston, MA.

NOAA-NCDC. 2003. Data Documentation for data set 3220,
Summary of the Month Cooperative. National Climatic Data
Center, National Oceanic and Atmospheric Administration.
http://www1.ncdc.noaa.gov/pub/data/documentlibrary/tddoc/td3220.
pdf.

Oke TR. 1978. Boundary Layer Climates. Routledge: New York.
Schwarb M, Daly C, Frei C, Schar C. 2001a. Mean seasonal

precipitation throughout the European Alps, 1971–1990 . Hydrologic
Atlas of Switzerland, National Hydrologic Service, Bern,
Switzerland, hard copy.

Schwarb M, Daly C, Frei C, Schar C. 2001b. Mean Annual Precipita-
tion Throughout the European Alps, 1971–1990 . Hydrologic Atlas of
Switzerland, National Hydrologic Service, Bern, Switzerland, hard
copy.

Sharples JJ, Hutchinson MF, Jellet DR. 2005. On the horizontal scale
of elevation dependence of Australian monthly precipitation. Journal
of Applied Meteorology 44: 1850–1865.

Simpson JJ, Hufford GL, Daly C, Berg JS, Fleming MD. 2005.
Comparing maps of mean monthly surface temperature and
precipitation for Alaska and adjacent areas of Canada produced by
two different methods. Arctic 58: 137–161.

Smith RB. 1979. The influence of mountains on the atmosphere.
Advances in Geophysics 21: 87–230.

Thornton PE, Running SW, White MA. 1997. Generating surfaces of
daily meteorological variables over large regions of complex terrain.
Journal of Hydrology 190: 214–251.

USDA-NRCS. 1998. PRISM Climate Mapping Project–Precipitation .
Mean monthly and annual precipitation digital files for the
continental U.S. USDA-NRCS National Cartography and Geospatial
Center, Ft. Worth TX. December, CD-ROM and online.
http://www.ncgc.nrcs.usda.gov/products/datasets/climate/.

USDOI-USGS. 2007. Calendar year Streamflow Statistics for Washing-
ton . Water Resources of Washington, US Geologic Survey, Boulder,
CO, available online at http://water.usgs.gov/wa/nwis/annual.

Williams CN, Vose RS, Easterling DR, Menne MJ. 2004. United States
Historical Climatology Network Daily Temperature, Precipitation,
and Snow Data . ORNL/CDIAC-118, NDP-070. Carbon Dioxide
Information Analysis Center, Oak Ridge National Laboratory, Oak
Ridge, Tennessee.

Willmott CJ, Matsuura K. 1995. Smart Interpolation of annually
averaged air temperature in the United States. Journal of Applied
Meteorology 34: 2577–2586.

Willmott CJ, Ackleson SG, Davis RE, Feddema JJ, Klink KM,
Legates DR, O’Donnell L, Rowe CM. 1985. Statistics for the
evaluation and comparison of models. Journal of Geophical Research
90: 8995–9005.

WMO. 1989. Calculation of Monthly and Annual 30-year Standard
Normals . Prepared by a meeting of experts, Washington, DC, USA,
March 1989. World Meteorological Organization, WCDP 10, WMO-
TD 341.

Copyright  2008 Royal Meteorological Society Int. J. Climatol. (2008)
DOI: 10.1002/joc


