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Abstract
Spatial climate datasets of 1981–2010 long-term mean monthly average dew point and min-

imum and maximum vapor pressure deficit were developed for the conterminous United

States at 30-arcsec (~800m) resolution. Interpolation of long-term averages (twelve monthly

values per variable) was performed using PRISM (Parameter-elevation Relationships on

Independent Slopes Model). Surface stations available for analysis numbered only 4,000

for dew point and 3,500 for vapor pressure deficit, compared to 16,000 for previously-

developed grids of 1981–2010 long-term mean monthly minimum and maximum tempera-

ture. Therefore, a form of Climatologically-Aided Interpolation (CAI) was used, in which the

1981–2010 temperature grids were used as predictor grids. For each grid cell, PRISM cal-

culated a local regression function between the interpolated climate variable and the predic-

tor grid. Nearby stations entering the regression were assigned weights based on the

physiographic similarity of the station to the grid cell that included the effects of distance,

elevation, coastal proximity, vertical atmospheric layer, and topographic position. Interpola-

tion uncertainties were estimated using cross-validation exercises. Given that CAI interpola-

tion was used, a new method was developed to allow uncertainties in predictor grids to be

accounted for in estimating the total interpolation error. Local land use/land cover properties

had noticeable effects on the spatial patterns of atmospheric moisture content and deficit.

An example of this was relatively high dew points and low vapor pressure deficits at stations

located in or near irrigated fields. The new grids, in combination with existing temperature

grids, enable the user to derive a full suite of atmospheric moisture variables, such as mini-

mum and maximum relative humidity, vapor pressure, and dew point depression, with

accompanying assumptions. All of these grids are available online at http://prism.

oregonstate.edu, and include 800-m and 4-km resolution data, images, metadata, pedigree

information, and station inventory files.
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Introduction
The demand for spatial climate data sets in digital form continues to increase, as more and
more climate-driven modeling and analysis activities are performed within spatially-explicit
computing environments. Key inputs to these analyses are grids of thirty-year decadal climate
averages (e.g., 1971–2000, 1981–2010, etc.), termed “normals,” that describe the values and
spatial patterns that can be expected in an average year or month. Through various forms of a
technique called Climatologically-Aided Interpolation (CAI; see Mapping Methods section),
climate normal grids also provide the foundation for a number of spatially distributed climate
products that cover individual years, months and days [1–4]. Normals produced by the PRISM
(Parameter-elevation Relationships on Independent Slopes Model) Climate Group at Oregon
State University are often used for this purpose [5–9].

Most spatial climate normals are limited to temperature and precipitation, but measures of
atmospheric moisture content and deficit are also important in a variety of processes, including
plant function [10–14], drought severity and wildfire behavior [15], [16], and climate change
impacts [17], [18]. Relatively little work has been to done to produce long-term normal grids of
such variables, partly due to a lack of observations. Empirical relationships have been devel-
oped to derive humidity measures from available temperature and precipitation data (e.g., [19–
21]), but such methods incorporate assumptions that are violated in certain regions (e.g., [22]).
Actual observations of mean dew point (Tdmean) have been included in monthly time series
datasets ([9]), which in turn have been incorporated into other datasets (e.g., [23]), but there
has been little focus on long-term normals of Tdmean. Further, long-term normals of atmo-
spheric moisture deficit have received even less attention. A useful variable in this regard is
vapor pressure deficit (VPD), which is the difference between the saturation vapor pressure
(dictated by temperature alone) and the actual vapor pressure. VPD is a direct measure of the
deficit, unlike relative humidity (RH), for which one must know the temperature at the time of
measurement [24]. Ideally, one would want to know the average minimum VPD (VPDmin) and
maximum VPD (VPDmax), which bracket the range of moisture deficit conditions throughout
an average day. This is similar to the advantage of knowing the average maximum and mini-
mum temperature as opposed to mean temperature only. An added advantage is that Tdmean,
VPDmin and VPDmax, in combination with existing grids of minimum and maximum tempera-
ture (Tmin and Tmax), allow many other atmospheric moisture variables to be derived, such as
minimum and maximum RH, vapor pressure, and dew point depression, with accompanying
assumptions (see Relative Humidity Derivation section, for example).

This paper describes the development of spatial climate normals of 1981–2010 mean
monthly Tdmean, VPDmin and VPDmax across the conterminous United States, using methods
that strive to account for the major physiographic factors influencing climate patterns. The
Tdmean normals are updates of datasets used in the development of a century-long monthly
time series [9]. The VPDmin and VPDmax datasets are, to our knowledge, the first of their kind,
although datasets of mean RH have been developed [25]. Section 2 of this paper describes the
study area, preparation of station data, and mapping methods. Section 3 presents the resulting
gridded data sets, and discusses model performance. Concluding remarks are given in Section
4.

Study Area andWork Flow
Climate data sets were developed for the conterminous US at 30 arc-second resolution in geo-
graphic (latitude/longitude) coordinates (Fig 1). A 30-arc-second grid cell is approximately 900
x 700 m at 40N latitude, and is referred to here as “800 m.” The boundaries of the grid are 22°N
and 50°N and 65°W and 125°W, which are exactly coincident with other 800-m grids from the
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PRISM Climate Group [8]. The interpolation was performed separately in three overlapping
regions: western, central and eastern US, and the resulting grids merged to form a complete
conterminous US grid. The western region extends from the Pacific Coast to eastern Colorado,
central from central Colorado to Lake Michigan, and eastern from eastern Minnesota to the
eastern seaboard.

Fig 1. Map of study area and station locations.Conterminous US and border area monthly average (a)
mean dew point (Tdmean) stations and (b) minimum and maximum vapor pressure deficit (VPDmin and
VPDmax) stations.

doi:10.1371/journal.pone.0141140.g001
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Care was taken to include as many islands offshore the US mainland as possible, but
undoubtedly some very small islands were missed. To accommodate GIS shoreline data sets of
varying quality and resolution, the modeling region was extended offshore several km and gen-
eralized to include bays and inlets. However, the gridded climate estimates are valid over land
areas only.

Overviews of the data processing and mapping work flows for Tdmean and for VPDmin and
VPDmax are diagrammed in Figs 2 and 3, respectively. The process began with hourly and daily
data for Tdmean, and hourly data for VPDmin and VPDmax, which were averaged to daily, and
then monthly, time steps, with quality screening done at each stage (see Station Data and Pro-
cessing section). At the monthly time step, all three variables were expressed as dew point

Fig 2. Work flow diagram for data processing andmapping of Tdmean. Cross-hatched boxes represent gridded data. See text for abbreviation definitions.

doi:10.1371/journal.pone.0141140.g002
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depression (DPD) to take advantage of a spatial consistency quality control (QC) method using
a version of PRISM called ASSAY (see Quality Control and Calculation of Monthly Values sec-
tion). Tdmean was kept in the form of DPD for interpolation by PRISM, and converted back to
Tdmean as a grid post-processing step. VPDmin and VPDmax were converted from DPD back to
their original forms before interpolation by PRISM (see Mapping Methods section). A perfor-
mance evaluation was conducted on the PRISM interpolation process (see Uncertainty Analy-
sis section). As a final step, output grids from PRISM were checked for consistency with
previously-created grids of 1981–2010 Tmax and Tmin.

Fig 3. Work flow diagram for data processing andmapping of VPDmin and VPDmax. VPD refers to either VPDmin or VPDmax. Cross-hatched boxes
represent gridded data. See text for abbreviation definitions.

doi:10.1371/journal.pone.0141140.g003
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Station Data and Processing

Data Sources
Data from surface stations, numbering about 4,000 for Tdmean (44 km average station spacing)
and 3,500 for VPDmax and VPDmin (47 km average station spacing) were obtained from a vari-
ety of sources (Table 1; Fig 1). Data from the National Weather Service (NWS) Automated Sur-
face Observing System (ASOS) came via Unidata's Internet Data Distribution system and the
National Climatic Data Center (NCDC) Integrated Surface Hourly/Integrated Surface Data
archives (ftp://ftp.ncdc.noaa.gov/pub/data/noaa/), supplemented by the Solar And Meteoro-
logical Observation Network (SAMSON) and Integrated Surface Weather Observations
CD-ROMs. NWS Cooperative Observer Program (COOP) andWeather Bureau Army Navy
(WBAN) data were obtained from (http://www.ncdc.noaa.gov/cdo-web/). USDA Forest Ser-
vice and Bureau of Land Management Remote Automatic Weather Station (RAWS) data came
from archives at the Western Regional Climate Center (http://www.raws.dri.edu), the Real-
time Observation Monitor and Analysis Network http://raws.wrh.noaa.gov), and from the
MesoWest Local Data Manager (LDM) feed and website (http://mesowest.utah.edu/data).
USDA Natural Resources Conservation Service (NRCS) Soil Climate Analysis Network
(SCAN) observations were provided through the National Water and Climate Center web ser-
vice (http://www.wcc.nrcs.usda.gov). Bureau of Reclamation AgriMet (AGRIMET) data were
obtained from the Pacific Northwest Region (http://www.usbr.gov/pn/agrimet/), Great Plains
Region (http://www.usbr.gov/gp/agrimet/), Upper Colorado Region in cooperation with the
Utah Climate Center (https://climate.usurf.usu.edu/agweather.php), and Mid Pacific Region in
cooperation with the Desert Research Institute (http://nicenet.dri.edu/) and the National Oce-
anic and Atmospheric Administration NOAA Idaho National Laboratory Weather Center
(http://niwc.noaa.inel.gov/). Data were also collected from the Oklahoma Climatological Sur-
vey Mesonet (OKMESONET; http://www.mesonet.org/data/public/mesonet/mts), Colorado
State University’s Colorado Agricultural Meteorological Network (COAGMET; http://ccc.

Table 1. Source, averaging interval, and number of stations used in the mapping process.

Source Averaging Interval Stations
Contributing � 1
Month to Grids

Stations
Contributing All
12 Months to
Grids

Tdmean VPDmin
VPDmax

Tdmean VPDmin
VPDmax

ASOS Hourly 1960 1947 1789 1619

RAWS Hourly 1066 1067 885 682

COOP Daily 388 0 334 0

OKMESONET Hourly 129 129 123 122

SCAN Hourly 116 116 87 76

AGRIMET Hourly 73 73 70 55

NDBC Hourly 72 72 53 56

COAGMET Hourly 63 63 54 50

WBAN Daily 42 0 38 0

Other Networks Daily 23 0 23 0

Total Surface Stations 4001 3467 3456 2660

NCAR/NCEP (Upper-air) Grid Points 1981–2010 monthly mean 69a 69a 69a 69a

a Count for upper air is the number of grid points used.

doi:10.1371/journal.pone.0141140.t001
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atmos.colostate.edu/~coagmet), and a small number of miscellaneous stations from state and
local networks.

To improve marine representation, data were obtained from coastal stations and offshore
buoys operated by the NOAA National Data Buoy Center (NDBC; http://www.ndbc.noaa.gov/
data/historical/stdmet). To better define humidity profiles at high elevations, mean monthly
upper-air temperature, geopotential height, and relative humidity grid points for the western
and eastern United States were obtained at 2.5-degree resolution for the period 1981–2010
from the National Center for Environmental Prediction (NCEP) Global Reanalysis (ftp://ftp.
cdc.noaa.gov/Datasets/ncep.reanalysis.derived/pressure). The 5650-m level (~500 hPa) was
chosen for the western US, and the 3050-m level (~700 hPa) for the eastern US. (Upper-air
data were not needed in the central US, because of a lack of elevated terrain.) These levels were
sufficiently far above the highest terrain features to minimize potential errors involved in esti-
mating surface humidity statistics from free air values.

Quality Control and Calculation of Monthly Values
As shown in Table 1, station data were available at either an hourly or daily time step. Daily
data were sufficient for Tdmean, but hourly data were required to calculate VPDmin and VPDmax.
In some cases, hourly data were provided in the form of RH directly from the instrument.
Range checks were performed to screen out values that were either impossible or could cause
instabilities in the calculation of related statistics. If RH� 0 or RH> 105, the value was set to
missing. Otherwise, if RH< 0.5, it was set to 0.5, and if 100< RH� 105 (as sometimes occurs
under saturated conditions), it was set to 100.

Dew point (Td) was derived from hourly RH (%) and ambient temperature (Ta,°C) by calcu-
lating the saturation vapor pressure at Ta (SATVPa) ([26], Eq 21):

SATVPa ¼ 6:1094e
17:625Ta
243:04þTað Þ ð1Þ

and finding Td (°C) [27]:

Td ¼
237:3ln SATVPa

RH
611

� �� �

7:5ln10� ln SATVPa
RH
611

� �� � ð2Þ

A consistency check was done to ensure that the calculated Td was less than Ta; if not, each
was set to missing.

As a range check, Td values that fell below -68°C, or exceeded the statewide extreme maxi-
mum temperature record (http://www.ncdc.noaa.gov/extremes/scec/records) were set to miss-
ing. In addition, the hourly Td values were subjected to a step check in which each value could
not differ from that of the previous hour by more than 10°C; otherwise the current hour’s Td

was set to missing.
Hourly VPDs were calculated from a combination of Ta and Td or Ta and RH, depending on

which was available. If RH was available, VPD was calculated by: (1) finding SATVPa from Eq
1; (2) finding the saturation vapor pressure at the previously calculated Td:

SATVPd ¼ 6:1094e
17:625Td
243:04þTd

� �
ð3Þ

and; (3) calculating VPD as

VPD ¼ SATVPa � SATVPd ð4Þ

Mapping Atmospheric Moisture Climatologies

PLOS ONE | DOI:10.1371/journal.pone.0141140 October 20, 2015 7 / 33

http://ccc.atmos.colostate.edu/~coagmet
http://www.ndbc.noaa.gov/data/historical/stdmet
http://www.ndbc.noaa.gov/data/historical/stdmet
ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis.derived/pressure
ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis.derived/pressure
http://www.ncdc.noaa.gov/extremes/scec/records


If Td was available, VPD was obtained by calculating SATVPd from Eq 3 and VPD from Eq
4. Each hourly VPD was subjected to a range check, where if VPD> 200 hPa or< 0 hPa, or if
VPD� SATVPa, the value was set to missing.

Three persistence tests were done on Ta and Td hourly values for each 24-hour period. If the
maximum difference between any pair of hourly observations or the difference between the
maximum and minimum value over the 24-hour period was less than 0.1°C, or the standard
deviation of all values in the 24-hour period was less than 0.1°C, the day was considered a “flat
day” and all variables, including the VPDs, were set to missing.

For networks with hourly data, Tdmean values were calculated by averaging available hourly
observations, subject to the requirement that at least 18 of 24 observations be non-missing;
fewer than 18 non-missing hourly observations resulted in a missing daily value. Daily VPDmin

and VPDmax, as well as Tmin, and Tmax, were determined by finding the minimum and maxi-
mum hourly value, respectively, subject to the same data completeness requirement.

Daily maximum and minimum Td (Tdmax, Tdmin) and mean Ta (Tmean) values were calcu-
lated for diagnostic purposes. Consistency checks were performed on daily combinations of
Tdmean and temperature as follows: If Tmax < Tdmax, Tmin < Tdmin, or Tmean < Tdmean, all vari-
ables, including VPDmin and VPDmax, were set to missing.

The daily values were averaged to create monthly mean Tdmean, VPDmin, and VPDmax for
each year of record. A minimum of 85% of non-missing daily values were required for a
monthly value to be non-missing [28], [29].

The monthly averages were tested for spatial consistency using the ASSAY QC (quality con-
trol) system. ASSAY is a version of PRISM that estimates station values in their absence and
compares them to the observed values, a procedure termed cross-validation [8]. The interpola-
tion procedures in ASSAY are exactly the same as in PRISM; the only difference is that ASSAY
interpolates to point (station) locations, rather than grid cells. As a rule, a large discrepancy
between an observed station value and the interpolated estimate from ASSAY suggests that the
station value is unusual compared to nearby stations, and may therefore be erroneous. In previ-
ous work, an ASSAY QC analysis was performed for Tdmean, with Tdmean expressed in the form
of dew point depression (DPD) with Tmin; that is, DPD = Tmin−Tdmean. (As will be discussed in
the next section, the DPD form of Tdmean was the favored method of expressing Tdmean for
interpolation in this study.) In the previous ASSAY analysis of DPD, QC was done manually by
trained personnel, and compared with the ASSAY results. It was found that when the absolute
difference between the observation and ASSAY estimate of DPD exceeded 4.5°C, the value was
considered erroneous by the manual method. Based on these results, in this study ASSAY QC
was applied to Tdmean expressed as DPD, and station values producing absolute differences
between the observation and estimate of more than 4.5°C were flagged as bad and set to miss-
ing. Overall, 0.8 percent of the monthly Tdmean values were set to missing using this method.

To take advantage of the ASSAY QC screening method, VPDmin and VPDmax were also
expressed as DPD with Tmin, termed DPD(VPDmin) and DPD(VPDmax), respectively. This
involved: (1) calculating the saturation vapor pressure for the station’s Tmin value (SATVPa)
using Eq 1; (2) subtracting the VPD from this value to get SATVPd; (3) obtaining Td from Eq 2,
substituting SATVPd for SATVPa and using 100 for the RH value; and (4) subtracting the
resulting Td from Tmin to obtain the DPD. Manual QC checks found that the same threshold of
4.5°C used in QC’ing DPD was suitable for DPD(VPDmin) and DPD(VPDmax) as well, and
those exceeding this threshold were flagged as bad and set to missing. Overall, 0.7 percent of
the monthly VPDmin values and 1.8 percent of the monthly VPDmax values were set to missing
using this method.

Monthly values of Tdmean, VPDmin, and VPDmax passing the ASSAY QC screening were
averaged over their period of record (POR), or 1981–2010, if available. A 1981–2010 monthly
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mean calculated using data from at least 23 of these 30 years (75% data coverage) was consid-
ered to be sufficiently characteristic of the 1981–2010 period, and was termed a “long-term”

station. However, many stations had a POR of fewer than 23 years. Averages from stations
with short PORs were subjected to adjustment to minimize temporal biases, as described in
[8], Appendix A.

Mapping Methods
Mapping of 1981–2010 mean monthly Tdmean, VPDmin, and VPDmax was performed using
PRISM [6–8], [30]. For each grid cell, PRISM calculated a local linear regression function
between the atmospheric moisture variable and a predictor grid (see Climatologically-Aided
Interpolation below). Nearby stations entering the regression were assigned weights based pri-
marily on the physiographic similarity of the station to the grid cell. Physiographic factors rele-
vant to this study were distance, elevation, coastal proximity, vertical atmospheric layer, and
topographic position (relative to surrounding terrain). Detailed descriptions of the PRISM
model algorithms, structure, input grids, and operation are given in [7], [8], and [30]. Details
on the specific modeling approach for this study are given below.

Derive or Interpolate VPDmin and VPDmax?
Given that Tdmean is a basic atmospheric moisture variable from which other variables can be
derived, early in this study the question was asked: do VPDmin and VPDmax need to be interpo-
lated separately, or can they be derived from a combination of the Tdmean grid and previously-
created grids of Tmax and Tmin? More specifically, can Tdmean be combined with Tmax to esti-
mate VPDmax and Tdmean combined with Tmin to estimate VPDmin? To do this, we must assume
that Td = Tdmean and Ta = Tmax at the time of VPDmax, and Td = Tdmean and Ta = Tmin at the
time of VPDmin. To test these assumptions, monthly averages of VPDmin and VPDmax, as well
as VPDmin and VPDmax estimated as described above, were calculated and averaged for each
month over the ten-year period 2003–2012 at 100 randomly selected ASOS stations with
hourly data. Results of this exercise are given in Table 2 for January and July, which bracket the
range of monthly values observed during the year.

In Table 2, actual and estimated VPDmin and VPDmax are expressed as means and percen-
tiles (5th percentile / mean / 95th percentile) so that the full distribution of values can be evalu-
ated. Differences between actual and estimated VPDmax were generally within about three hPa
or five percent across the distributions in both winter and summer. However, a proportion of
the estimated VPDmin values fell below zero, which is not physically possible. This problem was
most serious during winter; in January, a VPDmin of less than zero was estimated at 47 of the
100 stations. In these cases, Tdmean exceeded Tmin, resulting in a negative VPD. In reality, the
opposite was true, resulting in a positive VPDmin. Given this issue, deriving VPDmin and

Table 2. Monthly averages of actual and estimated vapor pressure deficit. 2003–2012 January and
July averages from 100 randomly-selected ASOS stations. Actual and estimated VPD values are expressed
as 5th percentile / mean / 95th percentile.

VPD (hPa) January July

VPDmin 0.2 / 0.8 / 1.6 0.9 / 3.3 / 9.7

Estimated VPDmin -0.6 / 0.7 / 1.6 -0.1 / 4.2 / 11.2

VPDmax 1.5 / 5.9 / 12.3 15.2 / 26.9 / 47.7

Estimated VPDmax 1.8 / 6.3 / 12.1 14.7 / 26.3 / 45.4

doi:10.1371/journal.pone.0141140.t002
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VPDmax from Tdmean, Tmin, and Tmax was not considered a viable option, leading us to interpo-
late VPDmin and VPDmax directly from station data.

Climatologically-Aided Interpolation
In previous work, constructing the 1971–2000 and 1981–2010 monthly normals for Tmin and
Tmax used a DEM as the predictor grid (see [8] for details on methods used for mapping Tmin

and Tmax). There were nearly 10,000 stations used in the mapping of the 1971–2000 Tmin and
Tmax normals, and over 16,000 stations used in the 1981–2010 normals. In contrast, there were
only 3,500–4,000 stations available for this study, with poor representation at high elevations.
Faced with limited station data, we opted for the CAI method of interpolation. CAI uses an exist-
ing climate grid to improve the interpolation of another climate element for which data may be
sparse or intermittent in time [31–36]. This method relies on the assumption that local spatial
patterns of the climate element being interpolated closely resemble those of the existing climate
grid (called the predictor grid). Uses of CAI fall into two main categories: (1) using a long-term
mean grid of a climate element to aid the interpolation of the same element over different (usu-
ally shorter) averaging periods; and (2) using a grid of a climate variable to aid the interpolation
of a different, but related, climate variable, such as interpolating annual extreme minimum tem-
perature using January mean minimum temperature as the predictor grid [37]. A classic example
of the first strategy involves mapping a long-termmean climatology carefully with sophisticated
methods, then developing time series grids for shorter averaging periods (monthly or daily)
using simpler and faster methods such as inverse-distance weighting to interpolate deviations
from the mean climatology to a grid. These deviations can then be added to (e.g., temperature)
or multiplied by (e.g., precipitation) the mean climatology to obtain the new grid.

Our use of CAI for this study falls into the second strategy, for which we use pre-existing
grids of 1981–2010 mean monthly Tmin and Tmax as predictor grids in the interpolation pro-
cess. A series of tests was conducted with ASSAY and PRISM to determine which of the 1981–
2010 mean monthly Tmin and Tmax grids were the strongest predictors of the spatial patterns of
Tdmean. Tmin was found to be a good predictor, which is not surprising given that temperatures
often reach the dew point at the time of Tmin over much of the US. However, inspection of the
interpolated grids revealed that in some areas subject to locally low temperatures, such as cold
air pools in mountain valleys, the interpolated Tdmean exceeded the mean temperature, mean-
ing that long-term mean RH exceeded 100 percent, which was not acceptable. In order to more
closely tie the patterns of Tdmean to the patterns of the existing monthly Tmin grids and their rel-
atively large supporting station data sets, each Tdmean station value was expressed as the devia-
tion from Tmin, or DPD (Tdmean—Tmin). Thus, in the interpolation process, PRISM was run
with the 1981–2010 mean monthly Tmin grid as the independent variable and DPD as the
dependent variable. The local regression functions were generally not as strong as they were in
the case of Tdmean vs. Tmin, because DPD was essentially the residual from the Tdmean vs. Tmin

relationship. Once the mean monthly DPD values were mapped in this manner, the final
Tdmean grid was obtained by adding the DPD grid to the 1981–2010 Tmin grid. The result was
an interpolated Tdmean grid that was highly consistent in an absolute, as well as relative sense,
with the associated Tmin grid. An example of the relationship between 1981–2010 January
mean observed DPD and gridded Tmin for a location north of the Wind River Mountains of
Wyoming (43.6N, 109.73W) is shown in Fig 4a. This area is characterized by persistent winter-
time cold air pools in mountain valleys, where the humidity is high and Tmin is less than Tdmean

(DPD<0). Above these cold pools, Tmin increases and rises above Tdmean (DPD>0).
An additional series of tests was conducted with PRISM and ASSAY to determine whether

either of the pre-existing 1981–2010 mean monthly Tmin and Tmax grids could be used as
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Fig 4. Scatterplots of relationships between predictor grid and interpolated variables. 1981–2010
mean monthly (a) dew point depression (DPD) vs. minimum temperature (Tmin) for January in western
Wyoming; (b) minimum vapor pressure deficit (VPDmin) vs. first-guess VPDmin for June near Las Vegas; and
(c) maximum vapor pressure deficit (VPDmax) vs. first-guess VPDmax for October in San Francisco.

doi:10.1371/journal.pone.0141140.g004
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predictors of the spatial patterns of VPDmin and VPDmax. Tmax was found to be a good predictor
of VPDmax; and the same was true for Tmin and VPDmin. However, once Tdmean was mapped, a
superior, second-generation CAI method using Tdmean became available. Termed CAI2, this
method involves using the result of a CAI interpolation as the predictor grid in another CAI
interpolation. Specifically, a first-guess VPDmin grid was created by calculating the VPD associ-
ated with the combination of the Tdmean and Tmin grids using Eqs 1, 3 and 4. Similarly, a first-
guess VPDmax grid was found by calculating the VPD associated with the combination of the
Tdmean and Tmax grids. These “first-guess” predictor grids represented what the VPDmin and
VPDmax spatial patterns would be like if Td was held constant throughout the day at Tdmean, and
VPDmin occurred at the time of Tmin and VPDmax occurred at the time of Tmax. While these
assumptions are not always correct (see Table 2), they are sufficiently reasonable to produce pre-
dictor grids that closely match the relative spatial patterns of VPDmin and VPDmax.

An example of the relationship between 1981–2010 June mean observed VPDmin and first-
guess predictor grid VPDmin for a location near Las Vegas, Nevada (35.79N, 115.26W) is
shown in Fig 4b. In this desert environment, VPDmin is still relatively large (14–22 hPa), even
at its minimum for an average day in June. The lowest VPDmin values are found at higher eleva-
tions, where temperatures are cooler. An example of the relationship between 1981–2010 Octo-
ber mean observed VPDmax and the first-guess predictor grid VPDmax for a location in San
Francisco, along the California coastline (37.76N, 122.45W), is shown in Fig 4c. In this case,
the lowest VPDmax values are found along the immediate coast where temperatures are cooler
and moisture is greater, with higher values in warmer and drier inland areas.

PRISMWeighting Functions
During PRISM interpolation, upon entering the local linear regression function for a pixel,
each station was assigned a weight based on several factors. The combined weight (W) of a sta-
tion is given by the following:

W ¼ Wc½FdWd
2 þ FzWz

2 �1=2WpWlWt ð5Þ

whereWc,Wd,Wz,Wp,Wl, andWt are cluster, distance, elevation, coastal proximity, vertical
layer, and topographic position weights, respectively, and Fd and Fz are user-specified distance
and elevation weighting importance scalars [8], [38]. All weights and importance factors, indi-
vidually and combined, are normalized to sum to unity. PRISM weighting functions not
enabled in this study were topographic facet weighting, which is used primarily to identify rain
shadows in precipitation mapping, and effective terrain height weighting, which identifies oro-
graphic precipitation regimes based on terrain profiles [8].

Table 3 summarizes how the PRISM climate regression and station weighting functions
accounted for physiographic climate forcing factors, and provides citations for further infor-
mation. Cluster weighting was used to keep clusters of stations that represent similar local con-
ditions from dominating the regression functions; both horizontal and vertical separations
were considered [8]. Distance and elevation weighting were used to accommodate the spatial
coherence of climatic regimes, both horizontally and vertically [8].

Coastal proximity weighting accounted for sharp gradients in temperature and atmospheric
moisture from coastlines to interior regions [7], [8], [30]. Atmospheric layer weighting was
useful where temperature inversions occurred, by delineating gradients in the relationship
between temperature and atmospheric moisture along the transition from the relatively humid
boundary layer near the earth’s surface to the drier free atmosphere above [7], [30]. Topo-
graphic position weighting differentiated topographically sheltered locations where cold, moist
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air may accumulate, from more exposed locations not susceptible to cold air pooling, such as
hill slopes and ridge tops [8], [38].

Relevant PRISM control parameters are listed in Table 4. A minimum of 25 stations were
required for each pixel’s regression function, and the radius of influence was expanded from a
minimum of 20 km to as far as necessary to reach the 25-station threshold. Tdmean slope
bounds were expressed as the change in DPD per unit Tmin from the predictor grid, and VPD
slopes expressed as the change in VPD per unit first-guess VPD from the predictor grid. The
maximum and minimum allowable regression slopes were derived from test runs of PRISM
where distributions of slope values were created and outliers examined to determine validity,
combined with performance assessments using ASSAY. In the final PRISM interpolation runs,
slopes falling outside the designated bounds were set to values that fell halfway between the
default slope and the bound that the slope violated (either the maximum or minimum). In the
western region, allowable slopes in the relationship between VPDmax and the first-guess
VPDmax were constrained to fall between 0.99 and 1.01, so as to avoid a rare circumstance of
predicting a VPDmax that might approach the value of SATVPa at Tmax (hence producing a
very low RH) in the warmest and driest areas. The exponential relationship between tempera-
ture and SATVPa steepens at higher temperatures, leaving less room for error in extremely
low-humidity situations. Unconstrained, the average slope of the 5.5 million PRISM regression
functions (one per pixel) for July (the warmest month) across the western region was 1.017,
with the 10th percentile at 0.964 and the 90th at 1.15, so this constraint had a very slight effect.

Station weighting parameters were very similar among the three variables, and were gener-
ally set to the same values across the three regions. The exception was the elevation weighting
exponent for VPDmax, which was set to 0.5, compared to 1.5 for the other variables. Tmax and
VPDmax occur primarily during the day, when the atmosphere is more likely to be well-mixed,
and vertical gradients in atmospheric moisture more slowly varying. As a rule, the weighting
exponents were set to the lowest values possible to achieve the desired effects. Being parsimoni-
ous with the weighting exponents ensured that the station data entering the local regression

Table 3. PRISMweighting algorithms and associated physiographic climate forcing factors. Inputs to the algorithms and references on their formula-
tion and use are included. Methods used to prepare the gridded model inputs are summarized in [8], Tables 1 and 2.

PRISM Algorithm Description Physiographic Forcing
Factors

Inputs to Algorithm Reference

Climate Regression
Function (CAI)

Develops local relationships between a
climate predictor grid and the interpolated
variable

Incorporates physiographic
features implicit in the climate
predictor grid

Station data; climate
predictor grid

This paper, Mapping
Methods Section; [37]
Section 4b

Cluster Weighting Downweights stations clustered with
others

– Station locations and
elevations

[8], Appendix B

Distance Weighting Upweights stations that are horizontally
close

Horizontal coherence of climate
regimes

Station locations [8], Section 4.2.1

Elevation
Weighting

Upweights stations that are vertically
close

Vertical coherence of climate
regimes

DEM; station locations
and elevations

[7], Section 4.1

Coastal Proximity
Weighting

Upweights stations having similar
exposure to coastal influences

Effects of water bodies on
temperature and moisture

DEM; coastal
proximity grid; station
locations

[7], Section 6; [30]
Section 2.3.2; [8]
Section 4.2.2

Two-Layer
Atmosphere
Weighting

If an inversion is present, upweights
stations in the same vertical layer
(boundary layer or free atmosphere)

Temperature inversions; vertical
limit to moist boundary layer
(humidity)

DEM; inversion height
grid; station locations

[7], Section 7; [30],
Section 2.3.4

Topographic
Position Weighting

Upweights stations having similar heights
above the local terrain

Cold air drainage and pooling in
topographic depressions

DEM; topographic
index grid; station
locations

[38], Section 4; [8],
Section 4.2.5

doi:10.1371/journal.pone.0141140.t003
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functions were not down-weighted unnecessarily, which can weaken the statistical results by
decreasing the effective number of stations in the regression.

A number of small but noticeable inconsistencies in DPD values between adjacent stations
were observed during the summer months in some agricultural areas, most notably in eastern
Colorado. Further investigation revealed that relatively low DPD values were coming from two
networks: AGRIMET and COAGMET. Stations in these networks are typically sited in or near
irrigated fields for use in water management calculations, resulting in more humid conditions
than locations away from irrigated areas. Given that the data from these networks were of oth-
erwise high quality, it was unreasonable to simply omit these two networks outright. This issue

Table 4. Values of relevant PRISM interpolation parameters. Regression slope bounds are sometimes different among regions; values separated by for-
ward slashes are for west, central, and east regions, respectively. See [7] and [8] for details on PRISM parameters and Table 3 for citations to details on
weighting function formulations.

Name Description Tdmean VPDmin VPDmax

Regression Function

R Radius of influence 20 km* 20 km* 20 km*

st Minimum number of total stations desired in regression 25 stations 25 stations 25 stations

β1ma Min valid regression slope, layer 1 -0.5+ -10/-1/-1.5# 0.99/0/0#

β1xa Max valid regression slope, layer 1 2.5+ 10/2/1# 1.01/1.5/1.5

β1da Default regression slope, layer 1 0.5+ 1/0.5/0.5# 1/1/1#

β1mb Min valid regression slope, layer 2 -0.5+ -10/-1/-1# 0.99/0/0#

β1xb Max valid regression slope, layer 2 2.5+ 10/2/1# 1.01/1.5/1.5#

β1db Default regression slope, layer 2 0.5+ 1/1/0.5# 1/1/1#

Distance Weighting

A Weighting exponent 1.5 1.5 1.5

Fd Importance factor 0.5 0.5 0.5

Dm Minimum allowable distance 0 km 0 km 0 km

Elevation Weighting

B Weighting exponent 1.5 1.5 0.5

Fz Importance factor 0.5 0.5 0.5

Δzm Station-grid cell elev difference below which weight is maximum 100 m 100 m 100 m

Δzx Station-grid cell elev difference above which weight is zero 5000 m 5000 m 5000 m

Coastal Proximity Weighting

v Weighting exponent 1.0 1.0 1.0

Δpm Station-grid cell proximity difference below which weight is maximum 100$ 100$ 100$

Δpx Station-grid cell proximity difference above which weight is zero 300$ 300$ 300$

Vertical Layer Weighting

y Weighting exponent 0.5 0.5 0.5

Δlm Station-grid cell distance to adjacent layer below which weight is maximum 100 m 100 m 100 m

Δlx Station-grid cell distance to adjacent layer above which weight is zero N/A N/A N/A

Topographic Position Weighting

μ Weighting exponent 1.5 1.5 1.5

Δtm Station-grid cell topo difference below which weight is maximum 50 m 50 m 50 m

Δtx Station-grid cell topo difference above which weight is zero 900 m 900 m 900 m

* Expands as needed to encompass minimum number of total stations desired in regression (st).
+ Slope is expressed as the change in dew point depression (DPD) per unit Tmin from the predictor grid
# Slope is expressed as the change in VPD per unit first-guess VPD from the predictor grid
$ Units are effective distance in grid cells from the coast, incorporating terrain barriers

doi:10.1371/journal.pone.0141140.t004
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raised questions about whether the grids should, or could, represent conditions over irrigated
land. Concerns over attempting to do so are summarized as follows:

1. Siting requirements for these station networks state that the station must be located in, or
immediately adjacent to, an irrigated field to be representative of an irrigated environment.
This suggests that the effects of irrigation on humidity are highly local, and which may not
extend beyond one 800-pixel. In practice, however, these stations influenced the interpo-
lated estimates many km away, well beyond the likely limits of irrigation in many instances.

2. A complete picture of the location and extent of irrigated lands across the country was
unavailable; further, there was no interpolation mechanism in place to constrain the influ-
ence of stations on irrigated fields to just those lands. It was also unclear how to modify
DPD values in the many irrigated areas not represented by station data.

3. We, and likely others, will be using these atmospheric moisture climatologies as the predic-
tor grids for CAI mapping of monthly and daily time series of the same variables. Given
that many of these time series will extend back a century or more, when crop patterns and
irrigation practices were very different than today, patterns of humidity caused by today’s
irrigation patterns could be propagated to times when they are not applicable.

Given these concerns, a subjective middle ground was taken, where a few (<10) stations
causing the most severe spatial discrepancies were omitted from the Tdmean dataset, and the
rest retained. For consistency, the same stations were also omitted from the VPDmin and
VPDmax datasets.

Grid Post-processing
Once monthly grids of Tdmean, VPDmin, and VPDmax were generated with PRISM, post-pro-
cessing checks were made to ensure that the interpolated values did not exceed reasonable
ranges, and that consistency was maintained among the three variables and with the pre-exist-
ing 1981–2010 mean monthly Tmin and Tmax grids. Given that the 1981–2010 monthly means
are by definition made up of yearly values above and below these means, the acceptable ranges
were defined to be more restrictive than what would be allowed on, say, a single day. If Tdmean

> (Tmean− 0.5°C), Tdmean mean was set equal to Tmean− 0.5°C. If VPDmin < 0.01 hPa, VPDmin

was set equal to 0.01 hPa. If VPDmin < 0.001 SATVPa at Tmin (i.e., RH> 99.9%), VPDmin was
set equal to 0.001 SATVPa at Tmin. If VPDmax > 0.95 SATVPa at Tmax (i.e., RH< 5%), VPDmax

was set equal to 0.95 SATVPa at Tmax. The number of grid cells affected by these restrictions
was limited to a handful in remote mountainous regions of the western US.

Results and Discussion

Spatial Patterns
Dew Point. Maps of 1981–2010 mean Tmin and Tdmean in January and July are shown in

Figs 5 and 6, respectively. The general patterns of Tdmean are similar to those of Tmin, especially
in winter. In January, values are lowest in the northern tier of states, and in cold pools along
valley bottoms in the West (Fig 5). Tdmean is high in the eastern part of the country in July,
exceeding 20°C in much of the Southeast, which is exposed to the transport of moist air from
the Gulf of Mexico (Fig 6). Despite relatively warm temperatures, July Tdmean is low in the dry
Intermountain West. A notable exception is the Southwest, where the summer monsoon pro-
duces locally elevated Tdmean values.

Interpolated DPDs between Tmin and Tdmean (Tmin—Tdmean) for January and July are shown
in Fig 7. DPD is the original variable interpolated with PRISM before being added to the Tmin
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grid to obtain Tdmean. In January, DPDs are mostly near zero or negative, meaning that Tdmean

is similar to, or greater than, Tmin over much of the country. In the northern US and in persis-
tent cold pools in large inland valleys of the West, Tdmean is as much as 3–5°C greater than Tmin

(Fig 7a). For example, the 1981–2010 mean January Tdmean at the International Falls, MN
ASOS station is -18.1°C and the mean January Tmin is -21.3°C. In contrast, Tdmean averages

Fig 5. Maps of January minimum temperature and dew point. Conterminous US 1981–2010 mean
January (a) minimum temperature (Tmin) and (b) dew point temperature (Tdmean).

doi:10.1371/journal.pone.0141140.g005

Mapping Atmospheric Moisture Climatologies

PLOS ONE | DOI:10.1371/journal.pone.0141140 October 20, 2015 16 / 33



6–8°C lower than Tmin in the southwestern US, which is a testament to the region’s aridity,
even in winter.

In July, Tdmean and Tmin have similar values in the eastern half of the country. Interestingly,
major metropolitan areas such as St. Louis, Kansas City, Minneapolis, and Detroit, and several
eastern seaboard cities, are visible as small areas of relatively warm Tmin values, resulting in
positive differences between Tmin and Tdmean of 1–3°C (dark green spots in Fig 7b). The West is

Fig 6. Maps of July minimum temperature and dew point.Conterminous US 1981–2010 mean July (a)
minimum temperature (Tmin) and (b) dew point temperature (Tdmean).

doi:10.1371/journal.pone.0141140.g006
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dominated by larger positive differences, where Tmin is much higher than Tdmean. The change-
over from near-zero to positive differences roughly follows the 100th meridian. Notable excep-
tions are the West Coast, where cool, marine air penetrates inland, and areas of the Southwest
affected by the summer monsoon. The core area of maximum DPD is centered on southeastern
California, Nevada, western Arizona, and lower elevations of Utah, where Tdmean averages 10–
25°C lower than Tmin. A combination of low moisture content (low Tdmean) and limited time

Fig 7. Maps of dew point depression (DPD). Conterminous US difference between the 1981–2010 mean
minimum temperature and the 1981–2010 mean dew point temperature (Tmin—Tdmean) for (a) January and
(b) July.

doi:10.1371/journal.pone.0141140.g007
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for nighttime cooling (high Tmin) during summer contribute to these high DPDs. Methods that
estimate Tdmean by assuming it is equal to Tmin would experience the largest errors in this
region [22].

Vapor Pressure Deficit. Patterns of 1981–2010 mean VPDmin in January and July are
shown in Fig 8. In winter, VPDmin is low (<1 hPa) over most of the country, due to a combina-
tion of low temperatures and relatively small differences between Ta and Td during the

Fig 8. Maps of meanminimum vapor pressure deficit (VPDmin). 1981–2010 meanmonthly VPDmin for (a)
January and (b) July.

doi:10.1371/journal.pone.0141140.g008
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morning hours (Fig 8a). Vapor pressure varies exponentially with temperature; for example, a
difference between Ta and Td of 1°C amounts to a VPD of 0.15 hPa at 20°C, but less than 0.05
hPa at 0°C. In July, VPDmin is also low in the eastern US, but exceeds 5 hPa over much of the
West, reaching maxima of over 20 hPa in the desert southwest (Fig 8b).

Spatial patterns of 1981–2010 mean Tmax and VPDmax in January and July are shown in Figs
9 and 10, respectively. Patterns of VPDmax roughly follow those of Tmax in January, with the
lowest values in the northern tier and western mountains, and the highest in the southern states

Fig 9. Maps of January maximum temperature and vapor pressure deficit.Conterminous US 1981–
2010 mean January (a) maximum temperature (Tmax) and (b) maximum vapor pressure deficit (VPDmax).

doi:10.1371/journal.pone.0141140.g009
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(Fig 9). In July, the area of high VPDmax expands considerably, exceeding 25 hPa over much of
the western US, and reaching a maximum of over 60 hPa in the desert southwest (Fig 10).
Coastal regions of the West exhibit relatively low VPDmax values, as they did for DPD. Similarly
low values are found at higher elevations, illustrating the strong spatial relationship between
VPDmax and Tmax. In the east, VPDmax values in the Midwest and northeast are mostly less
than 20 hPa, while those in the southeast can range above 25 hPa; a notable maximum occurs
in the piedmont region of Georgia and the Carolinas.

Fig 10. Maps of July maximum temperature and vapor pressure deficit. Conterminous US 1981–2010
mean July (a) maximum temperature (Tmax) and (b) maximum vapor pressure deficit (VPDmax).

doi:10.1371/journal.pone.0141140.g010
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Relative Humidity Derivation. RH can be derived from VPD and Ta by calculating
SATVPa at the desired temperature from Eq 1, and factoring in the appropriate VPD:

RH ¼ 100ðSATVPa � VPDÞ=SATVPa ð6Þ

On a gridded basis, if only Tmax and Tmin are available to estimate Ta, and only VPDmin and
VPDmax available to estimate VPD, grids of minimum RH (RHmin) can be approximated by
substituting VPDmax for VPD and Tmax for Ta, and maximum RH (RHmax) can be similarly
derived using VPDmin and Tmin. In performing these derivations, we make the assumption that
Ta = Tmin and VPD = VPDmin at the time of day when RHmax occurs, and Ta = Tmax and VPD =
VPDmax at the time of day when RHmin occurs. To evaluate the error introduced by these
assumptions, we calculated 2003–2012 mean monthly RHmin and RHmax for the same 100
ASOS stations used in Table 2 and compared them with the estimated RHmin that would result
from substituting VPDmax for VPD and Tmax for Ta, and RHmax resulting from using VPDmin

and Tmin. As expected, Tmax and VPDmax were slightly higher than Ta and VPD at the hour of
RHmax, and Tmin and VPDmin were slightly lower than Ta and VPD at the hour of RHmin

(Table 5). As a result, the substitutions resulted in an overestimation of RHmin and an underes-
timation of RHmax. The differences averaged less than five percent in all months, suggesting
that the derived grids are reasonable, but not exact, measures of the true RH.

Maps of estimated 1981–2010 mean January and July RHmin, estimated from grid values of
VPDmax and Tmax, reveal some interesting features not easily seen in the maps of VPDmax (Fig
11). In January, RHmin values are as low as 10–15% on the lee side of the Rocky Mountains,
associated with dry, Chinook (downslope) winds produced by a strong westerly jet stream. In
contrast, RHmin values exceed 70% in the winter-wet Pacific Northwest. RHmin values are also
above 70% in California’s Central Valley and Idaho’s Snake Plain, where extended periods of
high pressure and calm winds promote temperature inversions that often result in persistent
fog and low clouds (Fig 11a). Higher RHmin values in the upper Midwest reflect frequent cloudy
weather during winter in this region.

RHmin patterns in July show a divided country, with a dry west and moist east (Fig 11b).
The exception is the West Coast, where cool, moist onshore flow maintains relatively high

Table 5. Results of temperature and vapor pressure deficit substitution in the derivation of minimum
andmaximum relative humidity. 2003–2012 January and July averages from 100 randomly-selected
ASOS stations. Actual and estimated RH values are expressed as a distribution: 5th percentile / mean / 95th

percentile.

Variable January July

Ta at the hour of RHmin (°C) 4.7 29.8

Tmax (°C) 6.2 30.2

VPD at the hour of RHmin (hPa) 5.7 26.4

VPDmax (hPa) 5.9 26.9

RHmin (%) 19 / 44 / 64 14 / 39 / 55

Estimated RHmin (%) 20 / 48 / 67 15 / 40 / 55

Ta at the hour of RHmax (°C) -1.1 19.2

Tmin (°C) -4.2 18.4

VPD at the hour of RHmax (hPa) 0.8 3.4

VPDmin (hPa) 0.8 3.3

RHmax (%) 51 / 86 / 94 51 / 85 / 96

Estimated RHmax (%) 50 / 85 / 93 50 / 85 / 96

doi:10.1371/journal.pone.0141140.t005
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humidity values throughout the day. The lowest RHmin (<10%) values are centered in
Nevada, and more generally in the Great Basin. In the east, the highest values are found in
regions that receive substantial moisture from the Gulf of Mexico, such as the southern
Appalachians and Mississippi Valley.

Fig 11. Maps of minimum relative humidity.Conterminous US 1981–2010 mean minimum relative
humidity (RHmin) estimated frommean maximum temperature (Tmax) and mean maximum vapor pressure
deficit (VPDmax) for (a) January and (b) July.

doi:10.1371/journal.pone.0141140.g011
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Uncertainty Analysis
Estimating the true errors associated with spatial climate data sets is difficult, and subject to its
own set of errors [36]. This is because the true climate field is unknown, except at a relatively
small number of observed points, and even these are subject to measurement and siting uncer-
tainties (as has already been noted in the case of irrigated land, for example). Leave-one-out
cross validation (C-V) approach is the most common evaluation method where each station is
omitted from the dataset one at a time, the station value estimated in its absence, and the esti-
mate and observation compared. The mean absolute error (MAE) and bias are typically calcu-
lated once the process is complete. While this approach is commonly used to assess error in
interpolation studies, and is reported here, there are several disadvantages. An obvious disad-
vantage is that no error information is provided for locations where there are no stations. The
single-deletion method favors interpolation models that heavily smooth the results, so that
deletion of one station is relatively unimportant to the stability of the estimate. Randomly with-
holding a larger percentage of the station data at once can help to minimize this issue, as well
as provide more robust error statistics. Withholding a stratified sample from the analysis is use-
ful in detecting specific weaknesses or issues in the interpolation, as was done to investigate
irrigated stations (also, see [36] for an example).

In this study, uncertanties in the mapped estimates were initially estimated by performing a
C-V exercise with ASSAY, and the results compiled for each month for each of the three
modeling regions (west, central, and east).

Even accounting for weaknesses in the C-V methodology, these errors are underestimates of
the actual C-V uncertainty. One overlooked aspect of CAI is that it relies on predictor grids
which have their own interpolation errors. These errors accumulate from one CAI generation
to the next. For Tdmean, uncertainties in the interpolated Tmin predictor grids must be
accounted for. In turn, VPDmin relies on interpolated Tmin and Tdmean, and VPDmax relies on
Tmax, as well as Tmin and Tdmean.

To quantify the effects of error propagation on the CAI MAEs, the predictor grid interpolation
error was introduced at each CAI step by using ASSAY interpolated estimates at station locations
in their absence instead of the predictor grid values, which already have those station values built
in. For Tdmean, Tmin values for all stations used in the mapping of the Tmin predictor grid were esti-
mated in their absence using ASSAY, and estimates common to both the Tmin and Tdmean station
datasets used as the values of Tmin in an ASSAY C-V exercise for Tdmean. Tmin values for stations
used in the interpolation of Tdmean but not Tmin, such as those from the SCAN and COAGMET
networks, could not be estimated by ASSAY, because they were not used to create the predictor
grid. However, they could still be included in the Tdmean C-V error estimation because, by defini-
tion, the estimates at their location on the Tmin predictor grid were made in their absence.

For VPDmin, ASSAY estimates of station Tdmean values, predicted using ASSAY estimates of
Tmin as described above, were used in combination with ASSAY estimates of Tmin to form sta-
tion values of first-guess VPDmin, used as the predictor in the interpolation of VPDmin. The
result was station values of first-guess VPDmin that accounted for errors in the interpolation of
both Tmin and Tdmean. These were used as the values of first-guess VPDmin in a C-V assessment
of VPDmin with ASSAY. VPDmax involved the same steps as VPDmin, except that first-guess
VPDmax values were formed from a combination of ASSAY estimates of Tmax and Tdmean.
Again, a C-V exercise for VPDmax was performed with ASSAY.

Table 6 reports monthly ASSAY cross-validation MAEs for each of the modeling regions.
MAEs that account for CAI interpolation error propagation are denoted with a CAI or CAI2.
Figs 12, 13 and 14 show the distribution of cross-validation absolute errors at stations across
the country for Tdmean, VPDmin, and VPDmax, respectively.
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Dew Point. In general, Tdmean interpolation errors in the west were greater than those in
the central and eastern US, due primarily to terrain-induced complexities in the vertical distri-
bution of moisture and temperature. This is evidenced by higher absolute errors in the Rocky
Mountains, Cascades, and Sierra Nevada (Fig 12). Regionally, MAEs for Tdmean, interpolated as

Table 6. PRISMmonthly cross-validation mean absolute errors (MAEs). Both interpolation-only MAEs, and MAEs accounting for uncertainties in the
predictor grids (denoted by CAI or CAI2), are given below. See text for details.

Region/Variable Month

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

West

Tmax (°C) 0.65 0.63 0.63 0.64 0.64 0.66 0.69 0.68 0.66 0.62 0.57 0.61

Tmin (°C) 0.98 0.93 0.85 0.82 0.87 0.97 1.08 1.09 1.11 1.04 0.95 0.96

Tdmean (°C) 0.69 0.65 0.66 0.69 0.76 0.84 0.92 0.91 0.87 0.75 0.70 0.69

Tdmean CAI (°C) 0.76 0.75 0.77 0.79 0.88 1.00 1.12 1.10 1.03 0.86 0.80 0.79

VPDmin (hPa) 0.24 0.19 0.23 0.29 0.41 0.60 0.79 0.76 0.61 0.41 0.27 0.19

VPDmin CAI2 (hPa) 0.31 0.28 0.36 0.45 0.65 0.89 1.25 1.17 0.99 0.64 0.41 0.28

VPDmin (%) 41.9 31.2 32.2 31.0 28.5 30.1 30.5 32.1 32.2 29.2 34.0 33.7

VPDmin CAI2 (%) 58.5 45.2 50.0 45.8 42.9 45.8 48.3 48.7 52.0 44.7 51.3 49.7

VPDmax (hPa) 0.50 0.49 0.59 0.69 0.89 1.21 1.47 1.45 1.17 0.76 0.52 0.43

VPDmax CAI2 (hPa) 0.57 0.58 0.70 0.82 1.10 1.46 1.86 1.81 1.43 0.97 0.63 0.52

VPDmax (%) 11.1 8.7 7.4 6.4 6.1 6.3 6.0 5.9 5.8 5.8 7.6 10.1

VPDmax CAI2 (%) 11.8 10.2 8.4 7.0 6.8 6.8 6.9 6.9 6.5 6.7 8.5 11.4

Central

Tmax (°C) 0.44 0.46 0.48 0.48 0.46 0.44 0.44 0.43 0.42 0.41 0.38 0.40

Tmin (°C) 0.65 0.63 0.55 0.55 0.53 0.53 0.55 0.58 0.63 0.67 0.64 0.63

Tdmean (°C) 0.45 0.42 0.40 0.42 0.42 0.45 0.45 0.44 0.43 0.41 0.41 0.42

Tdmean CAI (°C) 0.47 0.44 0.43 0.45 0.45 0.48 0.48 0.48 0.46 0.43 0.43 0.44

VPDmin (hPa) 0.11 0.12 0.15 0.20 0.28 0.37 0.45 0.43 0.34 0.23 0.16 0.11

VPDmin CAI2 (hPa) 0.13 0.15 0.19 0.27 0.37 0.49 0.60 0.56 0.46 0.32 0.21 0.15

VPDmin (%) 22.4 22.0 20.3 19.3 22.8 23.6 29.6 33.0 31.3 28.4 23.3 23.2

VPDmin CAI2 (%) 28.5 28.8 26.4 26.5 31.9 33.4 42.0 47.0 44.0 38.7 31.2 29.9

VPDmax (hPa) 0.24 0.28 0.37 0.50 0.64 0.75 0.90 0.86 0.67 0.42 0.30 0.24

VPDmax CAI2 (hPa) 0.29 0.34 0.43 0.62 0.79 0.96 1.13 1.07 0.84 0.55 0.37 0.30

VPDmax (%) 5.3 5.1 4.2 3.8 3.9 3.6 3.8 3.7 3.5 3.2 3.7 5.1

VPDmax CAI2 (%) 6.3 6.1 5.0 4.7 4.7 4.6 4.7 4.5 4.4 4.1 4.5 6.1

East

Tmax (°C) 0.40 0.46 0.49 0.51 0.50 0.49 0.48 0.47 0.43 0.42 0.37 0.37

Tmin (°C) 0.62 0.64 0.61 0.65 0.65 0.60 0.60 0.63 0.69 0.71 0.64 0.61

Tdmean (°C) 0.46 0.42 0.40 0.40 0.40 0.40 0.38 0.38 0.40 0.39 0.39 0.39

Tdmean CAI (°C) 0.46 0.43 0.42 0.43 0.42 0.42 0.41 0.41 0.44 0.42 0.41 0.40

VPDmin (hPa) 0.10 0.12 0.19 0.25 0.31 0.36 0.38 0.38 0.33 0.24 0.18 0.13

VPDmin CAI2 (hPa) 0.13 0.15 0.23 0.32 0.39 0.48 0.50 0.48 0.41 0.30 0.22 0.15

VPDmin (%) 25.0 26.5 28.7 29.0 35.1 40.1 42.5 47.5 54.0 43.4 32.3 29.3

VPDmin CAI2 (%) 33.2 33.9 36.7 40.1 51.9 63.7 77.8 78.9 78.9 64.4 42.8 38.1

VPDmax (hPa) 0.25 0.28 0.50 0.59 0.75 0.93 1.01 0.91 0.73 0.48 0.34 0.26

VPDmax CAI2 (hPa) 0.28 0.32 0.45 0.69 0.89 1.07 1.23 1.12 0.89 0.59 0.40 0.30

VPDmax (%) 6.1 5.4 5.1 4.9 5.1 5.2 5.4 5.1 4.7 4.2 4.6 5.8

VPDmax CAI2 (%) 6.6 5.7 5.5 5.6 5.9 6.1 6.6 6.3 5.9 5.1 5.2 6.3

doi:10.1371/journal.pone.0141140.t006
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DPD (Tmin−Tdmean), were less than 1°C in the west and less than 0.5°C in the central and east
(Table 6). CAI MAEs that accounted for error propagation were 0.1–0.2°C larger than those
that did not in the west, but less than 0.05°C larger in the central and east, owing to larger Tmin

interpolation errors in the west.
The Tdmean C-V analysis showed that the MAEs were inflated by systematic positive biases

(lower observed DPD and higher Tdmean than predicted) in the COAGMET and AGRIMET

Fig 12. Maps of Tdmean absolute cross-validation errors. Errors for 1981–2010 meanmonthly Tdmean in (a)
January and (b) July.

doi:10.1371/journal.pone.0141140.g012
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networks. In fact, bias accounted for nearly all of the MAE. As discussed previously, stations in
these networks were typically sited in or near irrigated fields for use in water management cal-
culations. Despite subjective omission of stations producing the largest spatial inconsistencies,
network-wide biases were still noticeable. Fig 15a and 15b show monthly Tdmean MAE and bias
for each of the major station networks when each network is entirely eliminated from the data-
set at one time. Plots are for the central region, to better control for the effects of complex phys-
iographic features on interpolation bias; the exception is AGRIMET, which operates in the
western region only, but stations are in flat agricultural areas, so interpolated predictions
should be otherwise relatively unbiased. The peak MAE and bias in mid-summer correspond
to the maximum difference in atmospheric moisture content one would be expect between irri-
gated and non-irrigated land. At their summer peaks, the COAGMETMAE and bias were 1.7
and 1.6°C, respectively. Peak AGRIMETMAE and bias were 1.5 and 1.4°C, respectively. These
are in contrast to RAWS, for which the peak MAE was 1.4°C but the bias was only 0.1°C in the
central region. The MAEs for these networks were much larger than the overall MAE for the
central region of less than 0.5°C (Table 6).

A second source of systematic bias was found regionally in RAWS stations (Fig 15c). In the
western region, biases were negative (higher observed DPD and lower Tdmean than predicted).
In this region, the culprits may have been both local land cover and location. RAWS stations in
the West are used primarily for fire weather applications, and are typically sited in open, venti-
lated areas away from transpiring vegetation. In addition, many RAWS stations are located on
exposed terrain above locally humid cold air pools, and in foothill locations, which can be
above larger-scale valley inversions, where a dry, free atmosphere aloft overlies relatively moist
air below. Spring is the time of year when good vertical mixing causes a reduction in the inci-
dence of inversions and cold air pools, which may explain the minimal bias at this time of year.
The case for siting and location as causes for bias appears to be supported in the central region,
where RAWS biases are near zero (Fig 15c). It is not clear why biases become somewhat posi-
tive (lower observed DPD and higher Tdmean than predicted) in the eastern region. One expla-
nation may be that RAWS stations, often located in heavily forested areas in the east, are
sampling more locally humid environments than other networks located at airports and in
developed areas. The seasonal maximum bias in summer would correspond with the time of
maximum transpiration from vegetation.

Vapor Pressure Deficit. MAEs for VPDmin and VPDmax were calculated regionally as per-
centages and in absolute hPa units (Table 6) and absolute errors mapped across the country
(Figs 13 and 14). MAEs in absolute units were typically larger in summer than in winter, in
keeping with characteristically larger vapor pressure deficits in summer due to higher tempera-
tures (Table 6). Regionally, VPDmin MAEs were less than 1 hPa in all months and regions,
owing to relatively small absolute values. In January, the highest absolute VPDmin errors were
concentrated in the desert southwest, where moisture deficits are greatest (Fig 13). These
higher errors spread to most of the west in July, when deficits are seasonally high. Regional
MAEs ranged from roughly 30–40 percent in the west, 20–30 percent in central, and 25–50
percent in the east. CAI2 MAEs that accounted for error propagation were 0.1–0.5 hPa and
15–20% larger in the west, 0.05–0.15 hPa and 5–15% larger in the central, and 0.05–0.15hPa
and 10–25% larger in the east.

Regional VPDmax absolute MAEs were approximately double those for VPDmin in absolute
units. Percentage MAEs were accordingly much lower, ranging from roughly 6–11, 3–5, and
4–6 percent in the west, central, and east, respectively. CAI2 MAEs that accounted for error
propagation were 0.1–0.5 hPa and 0.5–1.5% larger in the west, and 0.05–0.25 hPa and 0.5–
1.5% larger in the central and east. MAEs were again inflated by systematic positive biases
(lower observed VPD observations than predicted) from COAGMET and AGRIMET. The
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spatial and temporal distributions of absolute errors were similar to that of VPDmin, with the
highest January errors in the west, spreading to the east in July (Fig 14). July VPDmax errors
were higher in the eastern US than those of VPDmin, because warm maximum temperatures in
this region produce significant daytime vapor pressure deficits, despite relatively high RH
values.

Fig 13. Maps of VPDmin absolute cross-validation errors. Errors for 1981–2010 mean monthly VPDmin in
(a) January and (b) July.

doi:10.1371/journal.pone.0141140.g013
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Summary and Conclusions
Long-term normal grids of 1981–2010 mean monthly average daily Tdmean, VPDmin and
VPDmax were developed for the conterminous United States. The Tdmean grids update previous
unpublished Tdmean normals used as CAI predictor grids in PRISM monthly time series

Fig 14. Maps of VPDmax absolute cross-validation errors. Errors for 1981–2010 mean monthly VPDmax in
(a) January and (b) July.

doi:10.1371/journal.pone.0141140.g014
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datasets, and to our knowledge, the VPDmin and VPDmax normal grids are the first of their
kind. Interpolation of the long-term monthly averages was performed using PRISM. Nearby
stations entering the PRISM local regression functions (one per pixel) were assigned weights
based on the physiographic similarity of the station to the grid cell that included the effects of
distance, elevation, coastal proximity, vertical atmospheric layer, and topographic position.
Relatively few stations were available for these variables, prompting us to use CAI to improve
interpolation accuracy. In the CAI process, 1981–2010 monthly Tmin grids served as predictor
grids for the interpolation of Tdmean, expressed as the dew point depression (DPD = Tmin

—Tdmean). Second-generation CAI (CAI2) involving Tdmean and Tmin, and Tdmean and Tmax,
predictor grids were used to interpolate VPDmin and VPDmax, respectively.

The general patterns of Tdmean were similar to those of Tmin in both winter and summer.
However, the assumption that Tdmean is equal to Tmin did not hold over large parts of the coun-
try. In winter, Tdmean was several degrees higher than Tmin in the northern US and in cold valley
locations of the West. In summer, Tdmean averaged 10–25°C lower than Tmin in the desert

Fig 15. Network cross-validation MAE and bias of mean dew point depression (DPD). By month, station network, and region, when each network is
entirely eliminated from the dataset at one time: (a) MAE for each network in the central region, except for AGRIMET, which is in the western region; (b),
same as panel a, except showing bias; and (c) RAWS network bias for each region. The number of stations in each network is given in Table 1.

doi:10.1371/journal.pone.0141140.g015
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southwest. VPDmin was very low over most of the country, due to a combination of low temper-
atures and relatively small differences between ambient and dew point temperatures in the
morning hours. Patterns of VPDmax roughly followed those of Tmax in winter, with the lowest
values in the northern tier and western mountains, and the highest in the southern states. In
summer, the area of high VPDmax expanded considerably, reaching a maximum of over 60 hPa
in the desert southwest. Coastal regions of the West exhibited relatively low VPDmax values,
where cool, marine air penetrates inland.

A PRISM interpolation uncertainty analysis was performed using C-V exercises. Since CAI
relies on predictor grids which have their own interpolation errors, these errors were included
in the overall error estimates. To quantify the effects of error propagation on the CAI MAEs,
the predictor grid interpolation error was introduced at each step by using ASSAY predictions
at station locations instead of the interpolated predictor grid values. When accounting for error
propagation, MAEs for Tdmean were 0.8–1.1°C in the west modeling region and less than 0.5°C
in the central and east, with the greatest errors typically occurring in summer. VPDmin MAEs
were generally less than 1 hPa in all months and regions, and VPDmax MAEs about double
those values.

Overall, accounting for CAI error propagation increased C-V errors, but not as much as
expected, especially when compared to the initial MAEs associated with the Tmax and Tmin pre-
dictor values. One reason for this appears to be that the errors were not systematically biased in
one direction; that is, overestimates and underestimates partly canceled each other, producing
lower net error increases.

Some stations in the AGRIMET and COAGMET networks were found to have consistently
high Tdmean and low VPD values during the summer months. Stations in these networks were
typically sited in or near irrigated fields for use in water management calculations, resulting in
more humid conditions than locations distant from irrigated areas. This raised questions about
whether the grids should represent conditions over irrigated land. A middle ground was taken,
where a few stations causing the most severe spatial discrepancies were omitted from the data-
sets. In addition, the siting of RAWS stations was posited as the reason for lower than expected
humidity in the west and higher than expected in the east. These issues highlight the effect that
local topographic position and land use/land cover properties can have on the spatial patterns
of atmospheric moisture content and deficit.

In combination with existing PRISM grids of Tmin and Tmax, grids of Tdmean, VPDmin and
VPDmax allow the user to derive many other atmospheric moisture variables, such as minimum
and maximum RH, vapor pressure, and DPD. Accompanying assumptions may need to be
made, however, such as those outlined in the derivation of RHmin and RHmax. These new grids
will serve as the predictor grids in second-generation CAI to produce an updated version of the
PRISM Tdmean monthly time series dataset that covers the years 1895-present [9], and initial
versions of monthly VPDmin and VPDmax time series grids for the same period using third-gen-
eration CAI. Similar methods will be used to produce initial versions of daily Tdmean, VPDmin

and VPDmax time series datasets, spanning 1981-present. All of the PRISM normal grids dis-
cussed here are available online at http://prism.oregonstate.edu, and include 800-m and 4-km
resolution data, images, metadata, pedigree information, and station inventory files. Links to
the papers cited in Table 3 and elsewhere are also available from this website.
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