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Abstract Studies in mountainous terrain related to ecology and hydrology often use interpolated
climate products because of a lack of local observations. One data set frequently used to develop
plot-to-watershed-scale climatologies is PRISM (Parameter-elevation Regression on Independent Slopes
Model) temperature. Benefits of this approach include geographically weighted station observations and
topographic positioning modifiers, which become important factors for predicting temperature in complex
topography. Because of the paucity of long-term climate records in mountain environments, validation of
PRISM algorithms across diverse regions remains challenging, with end users instead relying on atmospheric
relationships derived in sometimes distant geographic settings. Presented here are results from testing
observations of daily temperature maximum (TMAX) and minimum (TMIN) on 16 sites in the Walker Basin,
California-Nevada, located on open woodland slopes ranging from 1967 to 3111 m in elevation. Individual
site mean absolute error varied from 1.1 to 3.7°C with better performance observed during summertime
as opposed to winter. We observed a consistent cool bias in TMIN for all seasons across all sites, with cool bias
in TMAX varying with season. Model error for TMIN was associated with elevation, whereas model error for
TMAX was associated with topographic radiative indices (solar exposure and heat loading). These results
demonstrate that temperature conditions across mountain woodland slopes are more heterogeneous than
interpolated models (such as PRISM) predict, that drivers of these differences are complex and localized in
nature, and that scientific application of atmospheric/climate models in mountains requires additional
attention to model assumptions and source data.

Plain Language Summary Knowledge of daily-to-seasonal climate (such as air temperature) in
mountain areas is important for assessment of landscape conditions related to plants, animals, and
resources such as water supply. Because few actual observations of climate processes exist in mountains,
scientists have developed models to estimate parameters like temperature across landscapes. In this paper
we test one commonly used spatial temperature model using observations and report themodel error as well
as influential factors. Our conclusions state that while for some science and management uses the model
differences from observations are inconsequential, improper application of the model in other contexts
without local verification or consideration of assumptions would lead to incorrect results. We also show that
the location of long-term monitoring stations in mountain landscapes likely impacts model accuracy more
than differences in network instrumentation practices. Therefore, scientists or managers seeking to leverage
such models of temperature to make decisions need to be aware of both the representation of source data
and assumptions made during the modeling process. This study underscores the need for additional
long-termmonitoring of climate processes in mountain areas given the importance of such regions to society
in terms of resources and value.

1. Introduction

Atmospheric conditions in mountainous terrain at ecohydrologically important scales (e.g., subkilometer)
remain challenging to both observe and estimate. Scientific disciplines ranging from snow hydrology to bioe-
cology to palaeoclimatology struggle with obtaining accurate data with reasonable estimates of uncertainty
on the most basic of climatic parameters in complex topography [Lundquist and Cayan, 2007; Fridley, 2009;
Dobrowski, 2011; Graae et al., 2012; Stoklosa et al., 2014], which could have profound effects on interpretation
of large-scale cause and local-scale effect [Lookingbill and Urban, 2005;Minder et al., 2010;Warren et al., 2014;
Oyler et al., 2015]. The importance of research on mountain processes continues to be recognized as crucial
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for resiliency of socio-ecological systems on a global scale [Messerli and Ives, 1997; Viviroli and Weingartner,
2004; Foley et al., 2005; Gurung et al., 2012], and therefore, scientific investigators and policymakers will use
whichever data are made available in an information-poor environment.

Gridded products extrapolating point observations of meteorological parameters to landscape scales have
advanced in recent years [Brohan et al., 2006; Daly et al., 2008; Haylock et al., 2008; Thornton et al., 2012].
Regardless of model sophistication, the accuracy of these modeling efforts varies with density and quality
of source data networks [Hamlet and Lettenmaier, 2005; Daly, 2006; Hofstra et al., 2009; McEvoy et al.,
2014; Stoklosa et al., 2014; Oyler et al., 2015], and it is in mountainous topographic regions that observational
data are the most scarce [Palecki and Groisman, 2011]. Source data for models are typically derived from
valley-situated ground stations and ridgetop or upper air data, leaving the category of mountain slopes
poorly represented in observational data sets. Temporal and spatial resolutions of climate models are
increasing [e.g., Fowler et al., 2007; Skamarock et al., 2008; Feser et al., 2011], but newer ground networks that
add calibration and verification data are generally coarse in spatial resolution [e.g., Leeper et al., 2015]. It is
not uncommon to see analyses leveraging gridded climate data sets for process modeling or climate
change impact prediction, and yet not including verification observations and resulting error estimates. In
situ measurements of climate parameters such as air temperature are critical inputs to this process, as
remote-sensing-derived estimates of near-surface (e.g., 2 m) air temperature still contain significant sources
of error [Kalma et al., 2008; Hengl et al., 2012]. Validation of interpolated climate products within mountai-
nous regions is therefore an important scientific activity, in order to inform users on model
quality/accuracy as well as provide feedback to the modelers themselves on the performance of their pro-
ducts in varying geographical and seasonal settings [Minder et al., 2010; McGuire et al., 2012; Holden
et al., 2015].

Here we present a case study of topographic temperature model testing in complex topography in the Great
Basin region of North America, whereby the daily time step PRISM (Parameter-elevation Regression on
Independent Slopes Model) [Daly et al., 2008] temperature product was evaluated for performance across
a range of middle to high elevations on homogeneous topographic slopes at spatially distributed sites at
the large watershed scale. Daily maximum (TMAX) and minimum (TMIN) air temperature estimations from
PRISM at four spatial scales, i.e., 4 km grid, 30 arcsec (~800 m) grid, downscaled 3 arcsec (~80 m) grid, and
point interpolations from surrounding grid cells, are compared to in situ observations made with air tempera-
ture sensors on 16 mountain sites. Results of the comparison are examined for possible instrumental, topo-
graphic, or mechanistic sources of differences. Impacts of model bias on example applications are also
presented, with discussion on the challenges of modeling near-surface mountain meteorology.

2. Study Geography

Sixteen monitoring sites in mountainous topography are located within the Walker River Basin, a large
(10,200 km2) semiarid watershed in the western United States. This watershed is considered to be on the
climate transition zone between the Sierra Nevada and Great Basin Desert ecoregions of North America
(Figure 1). Several contemporary scientific, conservation, and policy-related projects in the watershed
integrate PRISM data as part of their efforts [Lopes and Allander, 2009; Millar and Westfall, 2010; Mejia et al.,
2012; Knick et al., 2013; Saito et al., 2014; Hatchett et al., 2015].

The monitoring sites are associated with an ongoing palaeoclimate study using upper and lower treeline
species (Pinus flexilis and Pinus monophylla), ranging from 1967 to 3111 m in elevation and generally
co-located in opposite-aspect pairs. Sites are distributed across four mountain ranges, ranging from west
to east (Figure 1), and represent a spatial gradient from Eastern Sierra to Great Basin ecosystems.
Topographic positioning of the sites varies (Table 1), but, in general, the locations were designed to repre-
sent homogenous slope features rather than peaks, ridgetops, saddles, gullies, or canyon floors. In this way,
the observations are specifically targeted at general air conditions that are free of influence from local cold-
air pools and topographically enhanced wind velocity. Thus, the primary drivers of air temperature on the
study sites are radiative processes, larger-scale airflow, and local lapse rates. While it is true that other
processes such as cold-air pooling, windiness, and snow presence have dramatic and important local effects,
proper estimation of general air conditions across topography is the first step to being able to correctly
model air temperature behavior at the watershed scale. We have therefore optimized the locations of in
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Figure 1. (a) Study area map with (b) elevation cross section. The distribution of paired study sites (green triangles) covered
the major mountain ranges of the Walker Basin, starting with the Sierra front and progressing east. Stations providing
source data for PRISM during the study period are shown (squares). A cross section of the watershed elevations (denoted by
a dashed line in Figure 1a) provides topographic context for stations and study sites, which are plotted in Figure 1b even if
they are located well away from the line itself. Most of the stations used by PRISM as source data are located in valley
bottoms, with midelevation stations being primarily from the SNOw-TELemetry network (SNOTEL) and geographically
skewed toward the western portion of the watershed.
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situ observations to focus on response of temperature to larger-scale topographic characteristics such as
elevation, slope, and aspect, which represent the first order of variability in mountainous terrain.

3. Data
3.1. PRISM Temperature Estimates

Grids of daily TMAX and TMIN estimates for the Walker River Basin were obtained from the PRISM AN81d data
set [Parameter-elevation Regression on Independent Slopes Model (PRISM) Climate Group, 2016]. This data set
spans 1981–present and covers the conterminous United States at 2.5 arcmin (~4 km) and 30 arcsec
(~800 m) resolutions. Mapping of daily TMAX and TMIN was performed using the PRISM modeling system
[Daly et al., 1994, 2002, 2003, 2008]. For each grid cell each day, PRISM calculated a local linear regression
function between station temperature and a predictor grid (see below). Nearby stations entering the regres-
sion were assigned weights based primarily on the physiographic similarity of the station to the grid cell. In
addition to distance and elevation differences between station and grid cell, physiographic factors accounted
for included the level of the approximate wintertime inversion (if any) and a topographic index, which is mea-
sure of local topographic position (i.e., the station’s elevation relative to the surrounding terrain). Detailed
descriptions of the PRISM model algorithms, structure, input grids, and operation are given in Daly et al.
[2002, 2008]. Specific methods relevant to this study are described below.

The PRISM AN81d (http://prism.oregonstate.edu/documents/PRISM_datasets.pdf) temperature time series
was developed using climatologically aided interpolation (CAI). CAI uses an existing climate grid to improve
the interpolation of another climate element for which data may be sparse or intermittent in time [Willmott
and Robeson, 1995; Funk et al., 2003; Hamlet and Lettenmaier, 2005; Daly, 2006; Daly et al., 2012, 2015]. This
method relies on the assumption that local spatial patterns of the climate element being interpolated closely
resemble those of the existing climate grid (called the predictor grid). The use of CAI in mapping daily tem-
perature for the AN81d data set involved using existing PRISM 1981–2010 monthly TMAX and TMIN normals as
the predictor grids [PRISM Climate Group, 2016]. For example, interpolating TMAX for 5 January 2014 involved
using the January 1981–2010 normal TMAX grid as the independent variable in the local PRISM regression
function for a grid cell and nearby station values of 5 January 2014 TMAX as the dependent variable. Details
on normals mapping methods are available from Daly et al. [2008].

Station temperature data in and around the Walker River Basin used in the PRISM AN81d data sets (Figure 1)
came primarily from four main networks: (1) U.S. Department of Agriculture (USDA) Natural Resources
Conservation Service SNOw TELemetry (SNOTEL; http://www.wcc.nrcs.usda.gov/snow/), (2) National

Table 1. Study Site Characteristics and PRISM Error Statistics

Site Characteristics

PRISM800 Error Statistics, Daily Values October 2013 to September 2015

TMAX (°C) TMIN (°C)

Site Elev (m) Slope (deg) Aspect (deg) DAH Index Bias MAE SD r2 (p < 0.0001) Bias MAE SD r2 (p < 0.0001)

Lucky.N 2480 21 325 �0.20 �1.37 1.83 1.78 0.97 �1.09 1.78 1.93 0.94
Lucky.S 2497 30 136 0.18 �3.45 3.49 1.54 0.97 �2.95 2.99 1.74 0.96
DevGate.N 2378 39 352 �0.52 0.70 1.15 1.30 0.98 �2.15 2.21 1.30 0.97
DevGate.S 2360 27 200 0.43 �3.47 3.49 1.31 0.97 �3.28 3.30 1.42 0.96
CoreyLow.N 2977 32 329 �0.31 0.78 1.68 1.96 0.96 �1.24 1.53 1.43 0.97
Corey.N 3104 34 307 �0.14 1.07 1.86 2.07 0.96 �0.27 1.22 1.49 0.97
Corey.S 3111 22 101 �0.07 0.95 1.42 1.46 0.97 �0.85 1.50 1.66 0.96
LWalker.N 2452 16 304 �0.04 �1.81 1.98 1.39 0.97 �0.91 1.14 1.30 0.96
Silverado.S 2897 26 157 0.30 �1.20 1.49 1.30 0.97 �2.67 2.80 1.83 0.94
Silverado.N 2937 31 270 0.20 �1.14 1.62 1.68 0.96 �1.99 2.13 1.69 0.94
PineGrove.N 2355 18 347 �0.24 �0.26 1.65 2.07 0.95 �2.58 2.65 1.68 0.95
PineGrove.S 2371 17 226 0.27 �3.19 3.32 1.86 0.96 �2.17 2.27 1.57 0.96
Kavenaugh.N 3000 37 310 �0.17 1.09 1.66 1.71 0.95 �1.29 2.07 2.17 0.91
Lundy.S 2911 33 212 0.51 �0.33 1.49 1.77 0.94 �1.27 1.86 2.00 0.92
WalkerCyn.N 2036 45 12 �0.67 1.69 1.82 1.68 0.97 �3.65 3.70 1.99 0.94
WalkerCyn.S 1967 38 188 0.57 �2.13 2.38 1.84 0.95 �2.88 2.93 1.72 0.95
Overall mean 2614 29 236 0.01 �0.75 2.02 1.67 0.96 �1.95 2.25 1.68 0.95
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Weather Service (NWS) Cooperative Observer Program (COOP; http://cdo.ncdc.noaa.gov/CDO/cdo/) and (3)
Automated Surface Observing System (ftp://ftp.ncdc.noaa.gov/pub/data/noaa/), and (4) USDA Forest
Service and Bureau of Land Management Remote Automatic Weather Stations (RAWS; http://www.raws.dri.
edu). Station data were screened for adherence to a “PRISM day” criterion. A PRISM day is defined as 1200
UTC–1200 UTC (e.g., 4 A.M.–4 A.M. PST). Once-per-day observation times, such as those from NWS COOP
stations, must fall within ±4 h of the PRISM day to be included in the AN81d TMAX and TMIN data sets. The data
set uses a day-ending naming convention; e.g., a day ending at 1200UTC on 1 January is labeled 1 January. The
PRISMday definitionwas established tomatch the “hydrologic day,”which is a standard in rivermodeling, and
align with the observation times of most once-per-day observers (e.g., NWS COOP), which are in the morning.

3.2. In Situ Observations

At each site, observations of daily TMAX and TMIN (in °C) for 23 months (1 October 2013 to 1 September 2015)
were made using Maxim iButton DS1922L thermochron dataloggers placed at approximately 1.7 m height
above ground level in the vegetation canopy interspace. These data are completely independent of PRISM
and were not used in model generation. The iButtons were configured using Maxim 1-Wire software to log
their case temperature every 60 min, and the data were subsequently processed to extract the daily high
and low temperature. Real-Time-Clock (RTC) drift of each iButton was evaluated at the end of the collection
period to ensure that cumulative RTC error did not exceed 50% of the observation interval. In order to repli-
cate standard weather station temperature measurements as closely as possible with the sensor deploy-
ments, the iButtons were placed inside six-plate Gill-type radiation shields using nonconductive mounting
holders that mimicked typical temperature probe head positioning. During the 2013–2015 interval, winter-
time bias of observed temperatures due to snow presence or interference with sensors at 1.7 m heights
was minimized by record-setting low snowpack levels across the region [Swain, 2015], verified on the study
sites with ground-level iButtons monitoring snow presence qualitatively. A subset of these observations is
being continued through longer-term study.

Because this study focused on daily extremes, the time alignment of PRISM with the observation data in this
study was checked using two different schemes: (1) PRISM Day, which consists of daily TMAX and TMIN taken
from observations spanning the hours 1200DAY�1–1200DAY+0 GMT (0400DAY�1–0400DAY+0 PST local time),
and (2) “Local Day,” which spans the hours 0800DAY+0–0800DAY+1 UT (0000DAY+0–0000DAY+1 PST local time)
and lagging the PRISM day by one, such that the daily TMAX and TMIN from in situ observations from the inter-
val 0000DAY+0–0000DAY+1 PST were alignedwith PRISM daily TMAX and TMIN from 0400DAY+0–0400DAY+1 PST. It
was found that statistical comparisons using the “Local Day” scheme were slightly improved, likely due to
PRISM’s use of local midnight-to-midnight SNOTEL TMAX and TMIN data, which fall within the ±4 h PRISM
day window. Therefore, the results shown are derived from Local Day time alignment rather than PRISM Day.

4. Test and Analysis Methods

Our evaluation of PRISM temperatures in this context followed three general steps: (1) comparison of PRISM
to observations, (2) investigation of potential error sources for both PRISM and the observations, and (3)
evaluation of impacts of model departures on common hydrometeorological variables.

4.1. PRISM: Observation Comparison

Differences betweenmodel estimates and observations were initially calculated at the primary (i.e., 30 arcsec)
scale of interest (PRISM800-Obs) for daily TMAX and TMIN, providing a first-order look at model performance.

4.2. Potential Error Sources

In order to better interpret the PRISM-Observations test, we investigated the likely sources of error present in
the comparison: (1) observational methods, (2) model scale, and (3) bias in the model driven by topography
and mountain meteorology given test site and source data locations.
4.2.1. Accuracy of Deployed Sensors
For long-term testing/evaluation purposes of the observational method used in this study, an identical
iButton/shield combination was placed on a scientific-grade weather station located at 2600 m elevation
in the center of the study watershed. The baseline instruments included a Campbell Scientific CR3000 data
logger, an HMP-60 temperature and relative humidity probe, and a Type-T thermocouple installed in
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identical shielding and configured to Western Regional Climate Center and World Meteorological
Organization specifications [World Meteorological Organization, 2008].
4.2.2. Model Scaling Test
Because most of the sites are located on steep slopes containing rapid changes in elevation over short dis-
tances (Slope; Table 1), we tested the influence of model scale on error. Estimates of daily TMAX and TMIN

(in °C) were obtained from PRISM at three additional spatial scales. Besides the native 30 arcsec grid
(~800 m; PRISM800), an upscaled 2.5 arcmin (~4 km; PRISM4K) grid was used, as well as point-interpolated
values (PRISMPOINT) that used a two-dimensional spatial weighting of the surrounding PRISM800 grid cells.
In addition, the 30 arcsec PRISM model was downscaled to 3 arcsec (~80 m; PRISM80) for the study area.
This downscaling was performed at each grid cell by: (1) calculating a local lapse rate between elevation
and the 30 arcsec gridded values and (2) applying this lapse rate to a 3 arcsec digital elevation model (DEM).
4.2.3. Topographic Relationships to Error
The PRISM temperature interpolation algorithm relied heavily on atmosphere-topographic relationships to
make spatial predictions. We therefore explored the possibility that topographically driven meteorology
was a factor in differences between PRISM and the observations. Several topographic characteristics for each
site (Table 2) [Guisan et al., 1999; Riley et al., 1999; Böhner and Antonić, 2009] were computed separately using
1/3 arcsec (~10 m) DEMs with open-source Quantum Geographic Information System (GIS) software
[Quantum Geographic Information System Development Team, 2015] running System for Automated Geo-
scientific Analysis processing algorithms [Böhner and Selige, 2006]. Elev is the elevation derived from the
DEM for each site point location. Slope is the steepness of the land surface from horizontal in degrees of
angle. Asp is the cardinal aspect of the site point location in degrees from true north. TPI is the topographic
position index, a measure of local prominence with a default bandwidth setting of 75 m. TRI is the terrain rug-
gedness index, a measure of amount of elevation difference between adjacent grid cells. DAH, or diurnal ani-
sotropic heating, is an index which represents incident radiative energy exposure. StdH is a measure of
relative slope position within the catchment area, taking into account drainage minimums and summit
heights. SlopeH is a measure of the total homogenous slope height associated with each point. NormH is
the normalized altitude of the terrain, stretched between the summit and lowest point in the watershed.
MSP, or midslope position, represents the fractional vertical position of each site on its associated slope fea-
ture. VllyD is the vertical distance to the nearest channel network base level, i.e., a local-scale valley/drainage
depth from each site point location. In addition, a topographic radiative aspect index (TRASP) [Roberts and
Cooper, 1989] was derived from aspect values using the formula:

TRASP ¼ 0:5� cos π
180

� �
Asp� 30ð Þ� �
2

;

where TRASP is a daily radiation loading index between 0 and 1 with zero being the coolest and one being
the warmest slopes, and where Asp is the cardinal aspect of the slope in degrees east of north.

Table 2. Topographic Variables and Relationships to PRISM Errora

Variable Description

TMAX Significance TMIN Significance

Referencer2 p r2 p

Elev Elevation of 10 m DEM 0.170 0.294 0.872 0.001

Slope Slope steepness 0.401 0.042 0.121 0.452
Asp Aspect, degrees 0.026 0.837 0.283 0.107

TPI Topographic position index 0.535 0.002 0.106 0.490 [Guisan et al., 1999]

TRI Terrain ruggedness index 0.418 0.034 0.119 0.433 [Riley et al., 1999]

DAH Diurnal anisotropic heating index 0.783 0.001 0.021 0.871 [Böhner and Selige, 2006;
Böhner and Antonić, 2009]StdH Standardized height 0.168 0.300 0.491 0.014

SlopH Slope height 0.170 0.299 0.349 0.055
NormH Normalized height 0.303 0.103 0.192 0.230
MSP Midslope position 0.333 0.074 0.280 0.114

VllyD Valley depth 0.522 0.010 0.014 0.910

TRASP Topographic radiative aspect index 0.818 0.001 0.039 0.754 [Roberts and Cooper, 1989]
aVariables of primary (yellow) and secondary (green) significance are highlighted.
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In an analysis similar to the topoclimatic work in Bunn et al. [2011], we investigated the influence of these
nonindependent spatio-topographic variables on model departures from observations. A complimentary
two-step process using independent cluster and ordination analyses was performed on the daily PRISM800

bias time series. First, hierarchical clustering with the Ward2 minimal-variance implementation in multidi-
mensional Euclidean space [Murtagh and Legendre, 2014] was used to group sites by similar error character-
istics. Two distinct cluster groups existed for both daily TMAX and TMIN errors (each with different site subsets)
based on evaluation of silhouette graphs generated using the same Euclidean distance calculations
[Rousseeuw, 1987]. In the second step, we plotted each site’s TMAX and TMIN error characteristics in two-
dimensional ordination space by using Non-Metric Multidimensional Scaling (NMDS) [Oksanen et al., 2015].

NMDS is an ordination method which allows comparison of pairwise dissimilarities between variables in low-
dimensional space using rank-based correlation (as opposed to linear correlation methods used in principal
components analysis or principal coordinates analysis). It accommodates variables with unknown distribu-
tions and removes unit distances (losing the absolute magnitude of ordination distance but retaining relative
positions of variables). In this case, topographic variables that are physiographically related but associated
with different atmospheric mechanisms can still be evaluated separately and grouped for relative influence
on PRISM departures in the same dimensional space. This aids in interpretation of topoclimatic mechanisms
which may influence PRISM error, such as insolation or large-scale air convergence. NMDS is an iterative algo-
rithm which requires successive ordinations (beginning with a randomized placement within n dimensions
specified) to be compared to actual pairwise dissimilarities until the difference between the two (“stress”)
is minimized. Stress values of 0.1 or below are considered fair ordination fits.

Vectors of the topographic variables were fit to the TMAX and TMIN error ordinations [Oksanen, 2015], and
significance assessed using permutation (n = 999; Table 2) within the package vegan [Oksanen et al., 2015]
in the open-source R software [R Development Core Team, 2015].

4.3. Impacts to Commonly Derived Hydrometeorologic Variables

In order to evaluate effects of model error to potential science questions, three use cases were examined.
Variables were targeted that are often used in applied mountain climate impact studies and estimated using
models like PRISM [e.g., Horning et al., 2010; Johnson et al., 2010; West et al., 2015; Copenhaver-Parry and
Cannon, 2016]. Because PRISM is leveraged for climate downscaling as well as plot-level studies, we thought
that it is useful to briefly demonstrate three different scenarios of model application in mountain meteorol-
ogy: (1) watershed-scale point-event prediction (such as first and last freezing days), (2) process modeling
(precipitation as snow), and (3) cumulative temperature impacts (degree-day thermal sums).
4.3.1. Frost-Free Season (2014)
We calculated the 2014 frost-free season (FF14) using both the observed data and the model outputs. The
length of time between the first and last frost (TMIN> 0°C) is considered an important metric of general grow-
ing season length for plants, and as a long-term climatic indicator has been increasing over recent decades in
the western United States based on observations [Easterling, 2002; Kunkel et al., 2004]. The frost-free season at
a given site is tied to synoptic mechanisms [Meehl et al., 2004] as well as local physiographic controls [Jordan
and Smith, 1995], while regional trends in frost-free days are linked to global patterns [McCabe et al., 2015].
4.3.2. Precipitation as Snow
We estimated precipitation as snow (PSNOW) using the following empirical model of frozen/liquid fractions
developed in a previous study of high-resolution meteorological data across a mountain watershed [Daly
et al., 2007]:

Ps ¼ �0:1667Tm þ 0:6667; 0 ≤ Ps ≤ 1;

where Ps is the proportion of daily precipitation as snowfall and Tm is the daily mean temperature in degrees
Celsius. If Tm is �2.5°C or less, Ps = 1, and if Tm is 4°C or above, Ps = 0.

Precipitation values from the daily PRISM 30 arcsec precipitation product were obtained for all 16 study sites
and then partitioned according to this relationship with air temperature. Although this snow-fraction model
was obtained in a different climatological region than the Walker Basin (western Oregon), given that this is
strictly a test of relative estimates between observed temperatures and the PRISMmodel, we felt comfortable
using it in this scenario.
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4.3.3. Heat Sums (2014 and 2015)
In a test of cumulative thermal sums, we estimated growing degree days (GDD) for the intervals 1 January to 1
September in both years from observations and model outputs using the following equation:

GDD ¼ TMAX þ TMIN

2

� �
� TBASE;

where TMAX and TMIN are daily maximum and minimum temperature and TBASE is the base temperature
(which is variable depending on the application). If [(TMAX + TMIN)/2] < TBASE, then [(TMAX + TMIN)/2] = TBASE.

We set TBASE = 5°C, as this represents a commonly used base temperature for climate-ecological studies
[Crookston et al., 2010; Thompson et al., 2012, 2015; Bentz et al., 2013], but such thermal sums are also a
common feature in mountain hydrology models [Rango and Martinec, 1995; Bergström et al., 2001; Hock,
2003]. Because PRISM does not contain hourly data, the true daily mean temperature was estimated using
TMAX and TMIN. It is most common to use the mean of the two extremes as in the GDD equation above
[McMaster and Wilhem, 1997].

5. Test and Analysis Results
5.1. PRISM: Observation Comparison

Systematic departures were clearly present between the model and observations, with a seasonal cool bias in
PRISM daily TMAX and consistent cool bias in PRISM daily TMIN (Figure 2). Across all sites, daily TMAX was under-
estimated on average (�0.75°C; Figure 2a), with mean bias varying by season. Mean absolute error (MAE) for

Figure 2. PRISM 30 arcsec model daily departures from observations. All model departures (PRISM800-Observations; gray
curves) are plotted for the interval October 2013 to September 2015. (a) Daily TMAX departures are averaged between all 16
study sites (red curve), indicating seasonal variability and overall slight negative bias (horizontal red line). (b) Daily TMIN
averages for all study sites (blue curve) show stronger negative bias (horizontal blue line) and a less-pronounced seasonal
variation in error. Error in daily TMAX (Figure 2a, gray curves) has a much wider spread across sites than daily TMIN (Figure 2b,
gray curves).
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daily TMAX ranged from 1.15 to 3.47°C, with standard deviations (SD) from 1.30 to 2.07, r2 values from 0.94 to
0.98 (p < 0.0001), and overall bias from �3.47 to 1.69°C (Table 1). For daily TMIN, negative bias was more
pronounced (�1.95°C; Figure 2b). MAE ranged from 1.14 to 3.70°C, with SD spanning 1.30–2.17, r2 values
from 0.91 to 0.97 (p < 0.0001), and overall bias from �3.65 to �0.27°C (Table 1). While some sites showed
similar relative departures in MAE, SD, and r2 for both diurnal extremes, this was not true for all, indicating
that underlying causes of the model departures were likely different for TMAX as opposed to TMIN.

5.2. Potential Error Sources
5.2.1. Accuracy of Deployed Sensors
Testing of the iButton/Gill shield deployment design revealed that this configuration logging at hourly
intervals is capable of capturing the same daily TMAX and TMIN as the Campbell Scientific equipment. Over
a continuous 93 week time frame, bias (calculated as iButton-Campbell) of the iButton daily TMAX compared
to the HMP-60 probe and Type-T thermocouple was 0.20°C and 0.45°C (standard deviation σ = 0.64 and
0.66), respectively. Bias (iButton - Campbell) of the iButton daily TMIN compared to the HMP-60 probe and
Type-T thermocouple was 0.15°C and �0.41°C (σ = 0.40 and 0.39), respectively. It should be pointed out that
the two Campbell sensor types themselves diverged, with mean HMP-60-Thermocouple being 0.25°C for TMAX

and �0.56°C for TMIN (σ = 0.31 and 0.10, respectively).

Engineering specifications for Maxim DS1922L iButtons require that all data loggers be calibrated/validated
against National Institute of Standards and Technology traceable reference devices, with a temperature
accuracy of ±0.5°C when postprocessed with Maxim iButton software [Maxim Integrated, 2016]. Campbell

Figure 3. Model scaling test results of (a) TMAX and (b) TMIN over the entire 2 year study period. Tests of PRISM scale
compared three error statistics (bias, standard deviation, and r2) from the standard 4 km (PRISM4K; square grid symbols)
and 800 m (PRISM800; rounded grid symbols) grid products with point interpolations (PRISMPOINT; solid dots) and
downscaled 80m grids (PRISM80; solid squares) across all 16 sites. The coarse-scale 4 km product has generally greater TMAX
(Figure 3a; red) bias than the fine-scale products, but does not typically diverge from the other scales for TMIN (Figure 3b;
blue) bias values. In most cases across all three error statistics, the finer-scale products display similar behavior, whereas
the 4 km product frequently diverges, usually in a direction that denotes less accurate model performance.
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Scientific specifications state that HMP60 probes within calibration are accurate to ±0.6°C [Campbell Scientific,
2016]. With bias and standard deviation of the paired measurement differences equaling less than 1°C in all
cases, we can safely state that the measurement methods using the iButtons for daily TMAX and TMIN are
functionally equivalent to the research grade sensors in a noncanopied environment.
5.2.2. Model Scaling Test
Estimates of daily TMAX and TMIN were compared using the four different model scales (PRISM4K, PRISM800,
PRISMPOINT, and PRISM80) over the entire 2 year study period. No systematic shifts were observed in model
bias, error standard deviations, or correlation with observations by changing model scale below 800 m;
however, we did observe greater departures in accuracy for many of the 4 km scale comparisons (Figure 3).
This indicated that model departures from observations on aggregated time frames were not a matter of
scale below the 800 m level even in very steep topography, but that application of the model at the 4 km

Figure 4. Ordination and cluster analysis results. Results from NMDS analysis are plotted for PRISM800 (a and c) TMAX and
(b and d) TMIN, indicating which site error characteristics are more related to each other. For TMAX, cluster groups are
partitioned by aspect/radiative exposure (DAH) as well as elevation. For TMIN, sites are clustered by a combination of
elevation and geographic location (not a test parameter). Ordination of PRISM error on each site from NMDS is plotted in
two dimensions for TMAX (Figure 4a) and TMIN (Figure 4b), indicating site relationships to topographic variable vectors
(arrows) and significance (arrow length), as well as site MAE (symbol size), cluster group (symbol type), and most significant
variable (symbol color). Clearly, the topographic characteristics of the sites are not independent, and gradients of MAE and
clusters do not align directly with any one variable. However, this serves as a visualization tool to aid interpretation of
cluster partitioning as well as significance of DAH and elevation for TMAX and TMIN, respectively. The cluster trees
(Figures 4c and 4d) show group breakdown by site, with more closely related PRISM-Obs error being plotted as neighbors.
Comparison with the site map (Figure 1) aids interpretation of the results and appreciation for interacting factors. For
instance, for TMAX Group 1, we see that Lundy and Kavenaugh are most related, even though they are very different in DAH
(Table 1); this is probably related instead to their spatial proximity to a SNOTEL (model source data) site. We observe
similar spatial clustering for the Corey sites (TMAX Group 1) and the Silverado pair (TMAX Group 2); however, the rest of the
cluster neighbors seem to fall out by aspect (north v. south). For TMIN, we see that the groups are separated by a com-
bination of spatial location and elevation (Group 1 is roughly all of the sites in the south/east/high portion of the study
area, whereas Group 2 is the north/west/low set of sites).
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resolution could yield different results.
Patterns in these differences also
indicated that separate error me-
chanisms were in play for TMIN as
opposed to TMAX, suggesting that local
land-atmosphere interaction becomes
increasingly important for modeling
temperature in mountains below 4 km
spatial resolution.

5.2.3. Topographic Relationships
to Error
Results from NMDS analysis of model
error and associated topographic vari-
ables were as follows: TMAX nonmetric
R2 = 0.999, stress = 0.034; TMIN non-
metric R2 = 0.994, stress = 0.079; indicat-
ing strong association with one or more
topographic features for TMAX and a fair
association with one or more features
for TMIN. Variables of significance (mea-
sured using the squared correlation
coefficient for the fit of the topographic
vector and its scores in the ordination)
for TMAX were the indices DAH
(r2 = 0.783, p = 0.001) and TRASP

(r2 = 0.818, p = 0.001), which are closely related surface heat-loading factors. VllyD (r2 = 0.522, p = 0.010)
and TPI (r2 = 0.535, p = 0.002) were significant factors for TMAX as well. Variables associated with error
characteristics for TMIN were Elev (r2 = 0.872, p = 0.001) and StdH (r2 = 0.491, p = 0.014).

The error ordinations, significance of topographic factors, and cluster groups were visualized in two-
dimensional plots (Figure 4). These results indicated that the mechanisms associated with PRISM departures
were tied to real processes associated with geographic location and topography. The observation that signif-
icant topographic factors are not directly aligned with the ordination axes tells us that multiple (and probably
interacting) processes are at work behind the nature of daily model bias.

5.3. Impacts to Commonly Derived Hydrometeorological Variables
5.3.1. Frost-Free Season (2014)
PRISM800 correctly approximated the last and first frosts of FF14 at 11 of 16 sites. PRISM4K performed similarly
but missed the last springtime freeze on three of the sites that the finer-scale models captured while correctly
noting the first freeze on one site that the other scales did not (Figure 5). In four cases, PRISM800 underesti-
mated the length of FF14, and in one case the season length was overestimated. Underestimates were
primarily on south facing slopes, and the overestimate was on a north facing slope. In only one case did
the PRISM80 and PRISMPOINT downscaled data improve the FF14 estimate. Differences among PRISM scales
were limited to the lower elevation sites.

5.3.2. Precipitation as Snow
PRISM’s estimates of PSNOW were similar to observation-driven estimates across most of the sites (Figure 6).
However, we found that PRISM4K significantly underestimated PSNOW at four upper sites and noticeably over-
estimated PSNOW at three lower sites. Differences between the three finer-scale PRISM products were minimal
and typically very close to PSNOW estimates made using the observed temperature.

5.3.3. Heat Sums (2014 and 2015)
As expected given the consistent cool bias in both TMAX and TMIN, PRISM generally underestimated GDD at all
sites in both years (Figure 7). Once again, PRISM4K behaved differently than the finer model scales, in the
cases of upper elevation significantly overestimating the thermal sums in both years. Most of the sites
experienced between 200 and 400 more degree days in each year than estimated by the finer resolution

Figure 5. Frost-free 2014 season. Four spatial scales of PRISM daily data
are compared to observations when calculating the frost-free season.
Sites are sorted from low elevation (bottom) to high elevation (top). The
PRISM temperature model performance in this test is quite good, with
some disagreement between various scales of the model and the
observations. Notably, PRISM4K missed the last springtime freeze on three
sites when the finer-scale models did not.
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PRISM products, with only the
highest elevation sites showing mini-
mal bias in these cases. These differ-
ences between scales and elevations
could be significant for applications
of the data in climate impacts
modeling scenarios.

6. Discussion

Consistently high r2 values at all sites
between observations and PRISM
temperatures demonstrate that the
model approximates daily tempera-
ture variations in open woodland
environments well and that the
response of the model to changing
atmospheric conditions at the
watershed scale is quite reasonable.
Behavior of error statistics and
derived products from the upscaled
PRISM4K data set proved different
than subkilometer-scaled PRISM out-
puts, indicating the importance of
scale when estimating atmospheric
conditions in complex terrain. The
first-order error mode for PRISM800

on these study sites appears to be a
cool bias that underestimates daily TMAX at 10 of 16 sites and TMIN at all 16. Surprisingly, reducing
PRISM800 model scale by an order of magnitude had no consistent effect on results. Differences in error
seasonality and relationships to site topography instead suggest mechanistic sources of model departures,
tied to landscape/atmosphere interactions and how these are represented in source data or model processes.

6.1. Topographic Mechanisms of Error

Diurnal radiation loading is associated strongly with modes of model error in estimating true daily TMAX on
open woodland mountain slopes, followed secondarily by relative topographic position (Table 2). While it

Figure 6. Estimated precipitation as snow. Four spatial scales of PRISM daily
data are compared to observations when calculating percent of precipitation
as snow during the 2 year study period. Sites are sorted from low elevation
(bottom) to high elevation (top). The PRISM temperature model performance
in this test is generally excellent, with the exception of the PRISM4K product. It
is evident that scale plays a role in application of modeled air temperature
when estimating hydrometeorological parameters such as rain/snow
boundaries. For example, the use of finer-scale PRISM estimates are likely to
produce more accurate results when downscaling climate projections to
mountainous landscapes.

Figure 7. Growing degree days. Four spatial scales of PRISM daily data as well as observations are used to estimate thermal
sums on the study sites. In this case, growing degree days (base = 5°C) are shown for January–September seasons in years
2014 and 2015. GDD5 or thermal sums of similar types are often incorporated in ecological prediction and snowmelt
models tied to climate. Sites are sorted from low (bottom) to high (top) elevation. Finer scales of PRISM consistently
underestimated GDD5 across the watershed, especially at lower and warmer elevations, while the PRISM4K product did not
show the same consistency in bias.
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is also possible that this specific error is being confounded by incorrect assumptions of local lapse rates, the
ordination results clearly point to a strong contribution of hillslope heat-loading error vectors as opposed to
strictly elevational ones (Figure 4a). When we plot the mean PRISM800 bias for the separate site clusters, we
can immediately see that TMAX for Group 1 was consistently underestimated by PRISM (Figure 8a), whereas
Group 2 was overestimated in winter. These groups are primarily split between sites with high (Group 1)
and low (Group 2) radiative loading (DAH; Table 1). The difference in how PRISM treats these two categories
of sites approached 5°C at times during the low-Sun (winter) season, when slope and aspect had the greatest
effect on contrasting solar exposures. The relationship between daily temperature extremes and incident
solar radiation is well known [Bristow and Campbell, 1984; Thornton and Running, 1999], and the interactions
of radiation with geography, land cover, slope, and aspect have also been explored in the context of complex
terrain [McCutchan and Fox, 1986; Bolstad et al., 1998; McCune and Keon, 2002; Bennie et al., 2008]. These
relationships have been applied in gridded models with local calibration data obtained at relatively high
spatial resolution [e.g., Daly et al., 2007; Holden et al., 2015].

In the case of TMIN departures (Figure 8b), there is no consistent seasonal or clustering pattern; rather, a
systematic overprediction of drops in nighttime temperature occurred across all sites regardless of cluster
group or season. That is, observed overnight lows were warmer across all instrumented sites relative to
PRISM estimates. Because the most persistent negative bias in TMIN was actually during summer, we do
not suspect snow-on climatology bias in the model during these low-snow years, although snow can be a
factor in lowering nighttime temperatures [Pepin et al., 2011]. There were no significant topographic factors
associated with these errors besides relative elevation in the watershed (Table 2). This suggests a systematic
bias in PRISM’s station suite compared to the study sites.

Most of PRISM’s source stations are located in flat terrain or valley bottoms (Figure 1), which are conducive to
local cold air pooling and atmospheric decoupling, resulting in relatively low minimum temperatures. In
contrast, the steeply sloping study locations experience much less cold air pooling and are likely to be more
closely coupled to the free atmosphere (Figures 1 and 9). Valley-bottom decoupling from the upper air during

Figure 8. Error plots with cluster means. PRISM800 daily errors (PRISM-Obs) are shown for all 16 sites (gray) with means for
cluster groups (colored lines). Behavior of these clusters is visually quite different in terms of absolute and seasonal bias.
(a) This result is strongly aligned with the association of radiative loading indices with TMAX error (seasons with lower Sun
angle result in greater relative departure, including wintertime overestimation of TMAX at sites with less incident radiation).
(b) Daily TMIN error cluster groups do not show terribly different behavior and are differentiated primarily by a mean
bias offset. This result would agree with a spatial or elevational bias in the model given the locations and types of source
data stations in the watershed.
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stable nighttime conditions is a notable (if understudied) feature of Great Basin topography, and cold-air
pools at large scales have been documented as regularly occurring events in the region [Billings, 1954;
Wells and Shields, 1964; Wells, 1983]. While PRISM’s station-weighting functions account for topographic
position for this very reason, the lack of midslope stations to draw from compromised its ability to
replicate elevated TMIN values at the study sites. Thus, PRISM’s success in dealing with cold-air pooling and
stable-air nighttime lapse rates is largely dependent on the availability of stations in a variety of
topographic positions. Cold-air pooling, in general, remains a challenge for temperature modeling in
mountain environments, given that the frequency and depth of pools is dependent on regional
climatology, local airflow responses, and seasonal surface-atmospheric energy exchanges of individual
watersheds [e.g., Whiteman, 1982; Bell and Bosart, 1988; Lundquist et al., 2008; Daly et al., 2010; Lareau and
Horel, 2014; Holden et al., 2015].

6.2. Biases Related to Hardware and Station Micrositing

Both the PRISM source data and the test observations in this study are subject to a certain amount of bias
forced by hardware (primarily radiative shielding of the sensor) and sensor/station microsite characteristics

Figure 9. Examples of highly contrasting environments in both PRISM source data and test observations. Locations of
temperature sensors are circled in red. (a) The Silverado South study site has sparse vegetation and high surface albedo.
(b) The Virginia Lakes Ridge SNOTEL station is surrounded by tall vegetation. (c) The Pine Grove North study site is located
in a medium-density woodland with neutral surface albedo. (d) The Leavitt Lake SNOTEL station is in a low-density
woodland with surface albedo moderated by grasses. The height of the sensors above ground also differs, with SNOTEL
sensors being located at times significantly higher than 2m (Figure 9b photo source: USDA Natural Resources Conservation
Service (NRCS), September 2014).
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(vegetative cover, snow presence/absence, and local surface albedo). While the test sensors were deployed in
a uniform manner, the contributing network stations to PRISM consist of a wider variety of hardware and
microsite factors. COOP stations in valley locations typically use the highly effective passively aspirated
Stevenson screen sensor shelter [MacHattie, 1965], whereas the RAWS and SNOTEL networks use Gill-type
passively aspirated plate shields similar to the test installations. COOP and RAWS stations generally have
the sensors located at approximately 2 m in height above ground level (as do the test observations), whereas
SNOTEL sensors can be much higher (Figure 9).

Measurements of TMAX are primarily biased by shortwave radiation either entering the shield housing or
being transferred to the air inside by the shield material itself. The influence of shortwave radiation as a bias
source is directly related to the exchange between ambient air and the air inside the shield (i.e., wind speed
[Richardson et al., 1999]), as well as surrounding surface albedo [Huwald et al., 2009]. The albedo of typical
geology in the watershed (granites and hydrothermally altered rocks/soils) is high (Figure 9), and this study
was conducted during one of the lowest-snow periods recorded for the region, which would minimize
snowpack-driven wintertime increase in surface albedo, especially on south aspects. Increased albedo of
north facing or heavily vegetated surfaces due to snow retention in winter would be offset by reduced
incident radiation angle and increased shading. Because of these factors, we expect that seasonal biases in
both source and test data in TMAX due to snow presence are minimized during the study period. The
strongest source of observation bias under these conditions is more likely to be the typical airflow across
and through the shields during the warmest portion of the day. Surrounding vegetation significantly reduces
average wind speeds at the sensor housing, with the consequence that Gill-type shields can experience TMAX

warm biases up to several degrees when wind speed is near zero and the sensor housing is not shaded
[Nakamura and Mahrt, 2005; Huwald et al., 2009].

Measurements of TMIN are more influenced by microsite position and cool airflow during nighttime hours,
rather than hardware factors. The presence of snow can certainly impact local air temperatures [Pepin
et al., 2011]; however, the abnormally low snow amounts during the study period would have minimized
the duration of measurement bias during the snow season at these locations.

The question remains: how do these interacting factors impact source data bias versus test observation bias,
and how do these conclusions relate to interpretation of PRISM model performance? A primary source of
midelevation data for PRISM in the western U.S. is the SNOTEL network, a series of sites maintained for
seasonal streamflow prediction that also includes basic meteorological sensors [. Natural Resources
Conservation Service, 2015]. The Walker Basin is no exception—there are eight SNOTEL stations within or near
the watershed, and these dominate the local middle and upper elevation data contributions to the model.
The topoclimatic siting characteristics of these stations therefore become an important factor in the
performance of PRISM and other gridded models in the region. Because the SNOTEL network is designed
to measure snow hydrology variables near the headwaters of major streams and rivers, the stations are
frequently associated with upper elevation montane forests. They are situated such that they are not
thermally representative of woodland slopes, but rather flats or even sink zones. Accordingly, it is likely that
the SNOTEL stations in and around the Walker Basin experience air conditions with canopy-influenced
reduction of radiation and increased cooling as well as more stable, frequent flow of cool air during nighttime
conditions (Figure 9). These features make the SNOTEL sites a prime suspect in the PRISM departures in this
study, due to local siting characteristics rather than systematic instrumental error.

Instruments and topographic position being equal, the siting characteristics of SNOTEL sensors would, in
general, result in cooler TMAX values than the test observations during times of low wind speed simply due
to local shading and reduced local albedo. Elevated, more exposed sites in this region (such as our test loca-
tions) often experience persistent wind that would reduce TMAX bias in the test data. For example, the mean
wind velocity at the Rockland climate station (midelevation, in the center of the watershed, and open wood-
land ridge) during the study period was 5.3 m s�1. Because of elevated wind speeds, it is possible that many
of the testing sites would not experience significantly more TMAX bias than forested SNOTEL sites, in spite of
generally increased radiation factors. The differences in SNOTEL sensor height, however, could offset this on a
case-by-case basis, depending on air turbulence at the sensor housing [Nakamura and Mahrt, 2005].

It has recently been pointed out that changes in SNOTEL temperature sensing hardware and
calibration/processing practices could be introducing biases into the network [Oyler et al., 2015]. Reported
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shifts in temperature have been as much as ~1.1°C, primarily on the warm side, but varying with temperature.
At least some SNOTEL stations in the Walker were affected by this bias during the study period. A preliminary
correction (PRISM800corr) using an empirically derived ninth-order function developed in collaboration with
the National Park Service in Alaska (Daly et al., unpublished data) did not make significant improvements
to the model performance in our study (mean adjusted PRISM800 TMAX bias = �0.58°C compared to 0.75°C,
mean adjusted PRISM800 TMIN bias = �2.67°C, compared to �1.95°C). Thus, corrections to the model to
compensate for SNOTEL bias appear to be overshadowed by other bias sources. We therefore interpret the
primary mode of error in the overall test of the PRISM800 model to be a function of micrositing differences
between the PRISM source data and the study sites, and secondarily the larger topographic settings.

6.3. Applications and Use of PRISM in Complex Terrain

Our tests of the PRISM temperature product at different scales describe both strengths and weaknesses of
gridded climate interpolation models in mountainous terrain, particularly on the proportionally large areas
that are composed of elevated slopes. Our work also highlights several sometimes confounding sources of
measurement bias, which vary across data networks. These regional and network-specific biases create
challenges for both the model developer and the end user. We feel that this study’s results are likely transfer-
able across large portions of the Intermountain West where vegetation is limited to shrub and woodland
cover on steep topography. The reasoning for this is tied to typical spatio-topographic distribution of source
data for the model as well as the land cover types. Studies using PRISM (or other gridded products) directly or
as part of downscaling efforts applied to temperature-related questions should examine the scale of applica-
tion and cumulative effects of potential bias in both regional source data and representative topography. For
example, studies estimating frost-free periods on steep mountain slopes may well be quite accurate in their
conclusions, as first and last frost days in the intermountain west are most likely tied to transitional-season
synoptic events which are interpolated well by PRISM regardless of source data bias. Predictive models which
seek to partition precipitation or build/melt snowpack may be subject to greater error if coarse-scale grid
products are used (Figures 6 and 7). If thermal sum calculations (such as GDD5) are used in snowmelt or
climate impacts models, PRISM could introduce significant error (because of the cumulative nature of the
statistic) if study sites do not share the topographic characteristics of PRISM’s source data (Figure 7). Thus,
researchers focused on processes which are sensitive to small changes in atmospheric temperature may
discover that in order to arrive at accurate conclusions, local observations over full seasonal cycles for model
calibration purposes would be wise, especially if model source data in the region are not topographically
representative. This is becoming a more and more common practice, although the method of measurement,
micrositing factors, and radiative shielding practices introduce their own biases and must be understood
when making comparisons with gridded data sets.

7. Conclusions for Climate Science in Mountain Regions

Our results indicate that PRISM temperature is reasonably representative of conditions on semiarid mountain
slopes, but that absolute bias caused by a combination of factors can be significant and should be taken into
account when applying PRISM data to science questions in similar settings or downscaling climate models
over complex terrain. These findings highlight the importance of topoclimatic siting for near-surface obser-
vations in mountain science and how data processing (e.g., SNOTEL calibration) or prediction experiments
(e.g., warming) that shift regional temperatures by a degree or two can be completely overshadowed or
negated within interpolation models by source data bias at locally relevant scales.

We observed a significant improvement in model performance as grid resolution was increased from ~4 km to
~1 km, but no relative improvements weremade by further downscaling to ~80m or using point interpolation.
This suggests that at scales of 1 km or less, factors other than elevation, such as slope, aspect, and vegetation
cover (which drive local airflow and radiative effects), have greater significance for site-level daily temperatures
onmountain slopes. Therefore, as griddedmodels mature and incorporate diverse sources of data in pursuit of
greater resolution and accuracy, it falls to the individual researcher to ensure that the application and use of
modeled climate data are in fact appropriate to the science in question given model assumptions.

The relative amount of geographic area in mountain watersheds encompassed by elevated slopes is often
quite large compared to ridgetop or canyon bottoms [Strahler, 1952], representing opportunity for significant
spatial propagation of error if model assumptions are incorrect where slopes are concerned. The atmospheric
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and mountain science communities need to make concerted efforts to rectify the current lack of representa-
tive data across the gradients of elevation, aspect, and vegetative cover. Better characterization of local sta-
tion biases and increasing awareness of these in scientific application are also critical needs.

As future studies conduct in situ tests, the need for expansion of sensory networks that better capture a range
of climate variables across diverse topographies will become abundantly clear. Conducting similar tests
across a greater diversity of landscapes and topographic exposures both here in the Walker Basin and
elsewhere in the semiarid western U.S., with the express intent of observations replicating “standard” 2 m
weather station diurnal measurements that are used in interpolated products, is a lofty but obtainable goal
in pursuit of improving the near-surface atmospheric modeling process and scientific applicability.
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