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ABSTRACT: There is a great need for gridded daily precipitation datasets to support awide variety of disciplines in scienceand

industry. Production of such datasets faces many challenges, from station data ingest to gridded dataset distribution. The quality

of the dataset is directly related to its information content, and each step in the production process provides an opportunity to

maximize that content. The first opportunity is maximizing station density from a variety of sources and assuring high quality

through intensive screening, including manual review. To accommodate varying data latency times, the Parameter-Elevation

Regressions on Independent Slopes Model (PRISM) Climate Group releases eight versions of a day’s precipitation grid, from

24 h after day’s end to 6 months of elapsed time. The second opportunity is to distribute the station data to a grid using methods

that add information and minimize the smoothing effect of interpolation. We use two competing methods, one that utilizes the

information in long-term precipitation climatologies, and the other using weather radar return patterns. Last, maintaining

consistency among different time scales (monthly vs daily) affords the opportunity to exploit information available at each scale.

Maintaining temporal consistency over longer time scales is at cross purposes with maximizing information content. We

therefore produce two datasets, one that maximizes data sources and a second that includes only networks with long-term

stations and no radar (a short-term data source). Further work is under way to improve station metadata, refine interpolation

methods by producing climatologies targeted to specific storm conditions, and employ higher-resolution radar products.

KEYWORDS: Precipitation; Rainfall; Data processing/distribution; Data quality control; Radars/Radar observations;

Interpolation schemes

1. Introduction

There is a great need for spatially interpolated gridded pre-

cipitation datasets for a variety of uses in hydrology, agriculture,

natural resources modeling, water supply forecasting, and many

other domains. Estimates of total precipitation on a daily time

step are especially valued, but high spatial variability makes it

challenging to develop grids that faithfully represent actual con-

ditions on the ground. A number of gridded daily precipitation

datasets have been developed for the conterminousUnited States

(Abatzoglou 2013; Di Luzio et al. 2008; Hamlet and Lettenmaier

2005;Hamlet et al. 2010; Lin andMitchell 2005; Livneh et al. 2015;

Maurer et al. 2002; Thornton et al. 1997; Xia et al. 2012a,b).Many

incorporate Parameter-Elevation Regressions on Independent

Slopes Model (PRISM; Daly et al. 2008) datasets in one form or

another to provide spatial detail in physiographically complex

areas (Lundquist et al. 2015). All have strengths and weaknesses,

depending on the approach taken and intended applications.

The primary mission of the PRISM Climate Group at Oregon

State University is to advance the field of geospatial climatology,

which is the study of the spatial and temporal patterns of climate

and how Earth’s physiographic features, such as terrain and

coastlines, affect those patterns. The practical output of this re-

search is the development of spatial climate products on a regular

grid to support modeling and analysis. We have been publishing

gridded datasets for precipitation, as well as other climate ele-

ments, since the early 1990s using the PRISM climate mapping

system (Daly et al. 1994, 2002, 2008). These datasets were pro-

duced at a monthly time step until 2011, when daily time step

datasets were added to respond to needs in the crop insurance

sector. Moving to the daily time step presented new challenges to

an already complex operation, from station data ingest to product

generation and short latency delivery. While most papers ad-

dressing the development and comparison of spatial precipitation

datasets have focused primarily on interpolation methods (which

is indeed an essential component), generating high-quality daily

precipitation datasets requires careful attention to many other

steps in what is a lengthy and detailed process. This paper does

not focus on comparing one method with another, but rather

attempts to highlight some of the challenges our team has

faced along the entire product development chain, and briefly

describes how we have addressed those issues. Challenges
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presented here include station density (section 2), data

quality control (section 3), spatial interpolation (section 4),

temporal consistency (section 5), and operational consider-

ations (section 6). We follow with a discussion of further work

on data quality control, interpolation methods, and uncer-

tainty estimation (section 7), and conclude the paper with a

summary of the main points (section 8).

2. Challenge: Station density

Station density refers to the number of weather stations with

relevant data per unit area on the ground. Increasing station

data density from reliable sources is arguably the single most

effective way to increase the accuracy of spatial precipitation

datasets (e.g., Hofstra et al. 2009). To that end, we have put

substantial effort into identifying and ingesting precipitation

data from nearly 40 different sources, which include local, state,

regional, and national networks that cover the United States and

border areas of Canada andMexico (Fig. 1; Table S1 in the online

supplemental material). The largest of these is Community

Collaborative Rain, Hail and Snow Network (CoCoRaHS; Reges

et al. 2016), a volunteer network that began in 1998 and has since

grown to supply over 10 000 reports each day. The second largest

and longest-running network, also volunteer, is the National

Weather Service Cooperative Observer Program (COOP).

COOP currently provides about 4000 daily observations and

is accessed via the National Centers for Environmental

Information (NCEI) Global Historical Climatology Network-

Daily (GHCN-D) database (Menne et al. 2012). State volunteer

networks include those administered by the North Dakota State

Water Commission and theMinnesota State Climatology Office

(MNGage). All in all, volunteer observations typically account

for over 75% of our precipitation data, which underlines the

importance of citizen science in helping to quantify daily pre-

cipitation patterns across the country.

Automated national and regional networks used by

PRISM include USDA Forest Service and Bureau of Land

Management Remote Automatic Weather Stations (RAWS),

the Bureau of Reclamation AgriMet, and the U.S. Climate

ReferenceNetwork (USCRN).A number of state-levelmesonets

are ingested, including those in Alabama, Arizona, California,

Colorado, Delaware, Florida, Georgia, Kansas, Kentucky,

Michigan, Nebraska, New Jersey, North Carolina, North

Dakota, Oklahoma, Texas, and Washington. Valuable pre-

cipitation data for the mountains of the western United States

are acquired from the USDA Natural Resources Conservation

Service (NRCS) Snow Telemetry (SNOTEL) network.

We prefer to access station data directly from the providers,

so that we can receive complete quality flags, accuratemetadata,

and edited versions of the data, which are not always transmitted

to the user via third-party sources. This also affords the oppor-

tunity to communicate directly with the providers and, in some

cases, alert them when data quality issues arise. That said, we

access the Advanced Hydrologic Prediction Service (AHPS)

River Forecast Centers data through the National Weather

Service Daily Hydrometeorological Products (HYD) feed to

ingest networks for which we have not established direct

access such as the Hydrometeorological Automated Data

System (HADS) and Automatic Local Evaluation in Real-

Time (ALERT) networks. We also access Weather Bureau

Army–Navy (WBAN), Environment andClimate Change Canada

(ECCC), andMexican station data fromNCEI’s GHCN-D, and

we tap selected networks fromMesoWest (Horel et al. 2002) and

the California Data Exchange Center (CDEC). At present, the

FIG. 1. Distribution of precipitation station locations included in the daily grids for themonth of

July 2020.
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total number of stations used in our precipitation mapping

each day varies from about 19 000–20 000 in summer to about

15 000–18 000 in winter after screening for appropriate mea-

suring equipment (see section 3 for details).

We follow four steps when adding a new network or data

source: 1) set up data delivery methods with the provider, 2) ob-

tainhistorical data, 3)write ingest scripts to process data and insert

into a database, and 4) operationalize data delivery and ingest

systems. Developing andmaintaining station ingest systems for so

many disparate data sources requires significant ongoing re-

sources. Each data source has its own data access protocols, data

formats, units, and metadata, requiring that ingestion software be

tailored to each source individually. However, the data ingest

process does have a set of components in common, so our ap-

proach has been to store frequently used routines in a central li-

brary tobeusedas needed.Hourly or subhourly data are converted

to daily values in common SI units for storage in a PostgreSQL

database (https://www.postgresql.org). Data source formats and

access protocols can change unexpectedly, requiring us to monitor

the retrieval status on a daily basis to ensure that data are being

ingested properly, and to make adjustments as needed. Data in-

terruptions, such as transmission issues, power outages, govern-

ment shutdowns, and server upgrades and maintenance invariably

occur, but most can be handled subsequently and captured in later

releases of our precipitation grids (see section 6 for details).

3. Challenge: Data quality control

Precipitation is difficult to observe accurately, and is subject

to a variety of errors, including wind-induced gauge undercatch,

freeze-up, evaporative losses, misreporting, and underreporting

(Daly et al. 2007; Fassnacht 2004; Fiebrich et al. 2010; Goodison

et al. 1998; Kochendorfer et al. 2020; Ma et al. 2015). Not all of

these errors are identified and resolved by the quality control (QC)

procedures of the data providers themselves. As developers of

spatial precipitation analyses using numerous independent

data sources, we are often better positioned than individual

providers to assess data for spatial consistency. Spatial incon-

sistencies among stations can also be caused by temporal shifts

in the reported data, which can arise when station observations

are taken or summarized under different day definitions or

reported on the wrong day. Such errors compromise the sta-

tistical integrity of the spatial precipitation field by damping

extremes and day-to-day variance, altering wet day frequency,

etc. Therefore, we attempt to adjust for temporally misaligned

data as part of our QC process. The QC steps can be catego-

rized as follows (in the sequence they are executed): network-

level screening, single-stationQC, temporal adjustments, radar

QC, spatial QC, and manual QC review (Fig. 2). Each step is

summarized briefly below.

a. Network-level screening

Not all networks measure precipitation effectively in all sea-

sons. Many networks use equipment that is not designed for

winter use, such as unheated tipping-bucket gauges or equipment

that is not maintained in winter (e.g., Fiebrich et al. 2010). We do

not include such stations in our analysis during the months of

October–April (Table S1 in the online supplemental material).

Using networks with improper equipment or infrequent mainte-

nance during the winter months typically results in low precipi-

tation readings, creating biases that accumulate over time. These

networks can also present timing issues, such as when frozen

precipitation melts and falls into the gauge, days after a precipi-

tation event has ended. Currently, the decision is made on a

network-wide basis, rather than station by station (which is cur-

rently under development). This may result in the omission of

stations that do observe valid data in winter or are in warmer

locations where frozen precipitation is not a factor during the

October–April time period. However, experience has shown that

this protocol results in a significant reduction in the number of

FIG. 2. Schematic diagram of the quality control process flow. Observations failing single-

station QC do not proceed to the next QC steps.
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suspicious observations thatmust be examined duringmanualQC

review (see section 3f).

While network-level screening is effective at flagging inap-

propriate equipment for measuring frozen precipitation, we do

not attempt to adjust the remaining stations for gauge under-

catch that often occurs even during nonfrozen events. It is not

straightforward to do so in an accurate and comprehensive

manner, and requires data that are not normally available at

gauge sites (Goodison et al. 1998; Sevruk and Hamon 1984;

Yang et al. 2005). Adjustments also complicate evaluation

exercises that compare grid estimates with independent station

data, which are typically unadjusted. However, gauge under-

catch can create discrepancies in hydrologic and water balance

calculations (Lundquist et al. 2015).

b. Single-station QC

As precipitation observations are ingested into the PRISM

station database, checks are made to ensure basic validity and

completeness. For example, the value fails if it exceeds 115% of

the published record 24-h record precipitation value for the state

(https://www.ncdc.noaa.gov/extremes/scec/records). (Given the

marked increases in precipitation intensity that have recently

occurred across much of the United States, we will be monitoring

whether the 115% threshold needs to be increased to ensure that

valid extreme values are maintained.) Similarly, if a station pro-

viding data at a subdaily time step is missing more than six hours

on a given day, that day’s data fail the check because of the pos-

sibility that precipitation may have gone unreported.

Checks are also made at the monthly time step. The value fails

if it exceeds 115%of theworld recordmonthly precipitation value

(9300mm; https://www.weather.gov/owp/hdsc_world_record). If

more than two days are missing or invalid in a month, all days

within that month fail the check. Experience has shown that the

existence of more than two missing days in a month is often a

sign that some storms may have been missed, leading to low

monthly totals, and that there is a risk that the values reported as

daily may actually be multiday accumulations of unknown du-

ration or represent the wrong day. An exception to this logic is

when a major precipitation event such as a hurricane occurs,

causing a station to go offline after otherwise reporting consis-

tently; such exceptions must be handled during the manual QC

review (see section 3f). Observations that fail a single-station QC

check normally do not proceed to the subsequent QC steps.

c. Temporal adjustments

Our approach to improving temporal consistency is to

screen once-per-day station observations for adherence to a

fixed day definition. Our ‘‘day’’ is defined as 1200–1200 UTC

(e.g., 0700–0700 EST), which is near the observation time of a

large majority of the CoCoRaHS and COOP stations and is

also consistent with the AHPS ‘‘hydrologic day’’ definition

(https://water.weather.gov/precip/about.php). Defining a day

in the morning, rather than at midnight local time, minimizes

the need to try tomodify the precipitation values to correspond

to a time when few precipitation observations are actually

made. In addition, a universal rather than a local time provides

a baseline that is consistent across time zones and allows a

more straightforward downscaling to subdaily time steps.

Once-per-day observation times must fall within 64 h of

1200 UTC to be considered ‘‘on time.’’

Stations that fall outside this day definition (termed ‘‘off

time,’’ currently 25%–30% of COOP observations) or are

multiday accumulations, are processed with an algorithm that

estimates on-time station values from off-time values and also

disaggregates multiday accumulations. This is done by cre-

ating initial daily precipitation grids with PRISM using on-

time stations only. For daily values from off-time stations,

discrete precipitation events of one day or more are identified

(Fig. 3). An event is defined as beginning and ending with zero

FIG. 3. Example reapportioning of daily precipitation for an off-time

station. Initial grids of daily precipitation are interpolated over a period

of days with PRISM using on-time stations only. At an off-time station

location, a precipitation event of 1 or more days is identified as be-

ginning and ending on days with zero daily precipitation according to

both (a) the initial grid, and (b) the station, in this case on days 0 and 5.

(c) For this event, daily precipitation values at the off-time station are

reapportioned based on the relative daily precipitation from the on-

time grid, while maintaining the event total from the off-time station.
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daily precipitation at both the station and the on-time grid cell

containing the station. The total observed station precipitation for

that event is then disaggregated to match the relative apportion-

ment of the daily precipitation values for that event on the on-time

grid cell, while retaining the event total from the off-time station

(Fig. 3). A similar method is used to reapportion multiday accu-

mulations into daily values. Reapportioned daily station values

are then appended to the daily precipitation station dataset and

used in a second PRISM interpolation run that uses all stations.

The second run exhibits improved spatial consistency among

stations, although some artifacts can remain because of inaccurate

observation times or reporting issues (Fig. 4); these issues are the

subject of further work (see section 7a).

d. Radar QC

Radar QC is applied at the daily time step and is designed

to screen for false zero values and false ‘‘spikes’’ in the record

that cannot be corroborated. It compares the observation

with the AHPS stage-4 (ST4) 4-km gridded radar–rain gauge

product (Lin and Mitchell 2005). The ST4 analysis is a na-

tional radar mosaic that has been locally adjusted with station

data (see section 4 for details). Only areas east of 1058W
longitude are subject to radar QC; this corresponds to the

area of greatest radar coverage with minimal terrain inter-

ference. The daily observation fails if the ST4 analysis at or

within about 8 km around the station location indicates sub-

stantial precipitation ($2.5mm) but the station observation

shows zero, or vice versa.

e. Spatial QC

Spatial QC takes advantage of the PRISM interpolation

system to identify observations that are spatial outliers. In a

process called jackknife cross validation with replacement, the

procedure removes a station observation, uses PRISM to

predict a precipitation value at that station’s location, then

replaces the station’s observation in the dataset (Daly et al.

2008). The observed and predicted values are then compared.

If the difference between the two is larger than can reasonably

be expected (see next paragraph), the observation may fail

spatial QC. Tests are made to determine confidence in the

model estimate; if it is low, the station value may be retained.

Confidence is determined by evaluating station density in the

area, and how much scatter exists in the regression function

between the predictor grid and the station observations (see

section 4 for details on PRISM operation). Spatial QC is re-

peated iteratively over 3–5 cycles, with failed stations removed

at each step, until no further stations fail the test. To maximize

the ability of PRISM to provide a robust estimate for com-

parison in what is typically a spatially noisy field, spatial QC is

performed at the monthly time step.

FIG. 4. Precipitation analysis for 20 May 2010 in the east-central United States using (a) all observations re-

gardless of observation time and (b) all observations after off-time stations have been adjusted. Off-time stations

not adhering to the 1200–1200 UTC day definition recorded significant precipitation from a system approaching

from the west a day early as compared with the on-time observations.
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Since the inherent variability of precipitation increases as

the average value increases, we must account for this when

evaluating differences between predictions and observations.

Using precipitation data over a 30-yr period, linear relation-

ships between mean monthly precipitation and its standard

deviation were developed using data from COOP stations. An

estimated standard deviation for a given monthly precipitation

value can then be derived from these equations. Our approach

is to determine if the difference between the prediction and

observation exceeds a threshold number of standard devia-

tions. The threshold, currently set to 1.59 standard deviations,

was determined through a manual process of finding the ap-

proximate dividing line between differences that indicated

truly erroneous data, and data that appear to be accurate.

f. Manual QC review

Each month, PRISM analysts visually review the daily and

monthly precipitation maps for the prior six months. Using an

in-house web application, these maps are examined for outliers

and inconsistencies that were not flagged during the automated

QC steps described above. Analysts review the precipitation

maps in their native form, as well as derived statistics such as

anomalies from long-term normals and number of wet days per

month, to detect values that may look reasonable on the sur-

face but are actually outside expected norms. Suspicious sta-

tions are subjected to a visual time series analysis, where values

over the surrounding weeks or months are plotted alongside

those of nearby stations to determine if the value in question

is a temporal or spatial outlier. The station value fails manual

QC if the analyst determines that the observation should not be

included in the gridded product, given all available evidence.

The observation can be flagged at either the daily or monthly

time step; if monthly, all days in the month are automatically

flagged and will not be used in that month’s daily mapping

process. The analyst can also reinstate a value that had failed a

spatial QC step. At the completion of manual QC, each daily

andmonthly grid is remodeled with PRISM. The newmaps are

again screened to ensure that all suspicious values have been

investigated and rectified. The end result of the QC procedure

is a set of what are believed to be spatially and temporally

consistent data (Fig. 5).

4. Challenge: Spatial interpolation

Daily precipitation patterns are often highly variable and

may contain both zero and large nonzero values in close

proximity. By drawing data from stations that are outside the

grid cells being estimated, spatial interpolation to a regular

grid invariably has a smoothing effect on the field being an-

alyzed (Ensor and Robeson 2008; Gervais et al. 2014). This

often leads to overestimating areas of locally low or zero

precipitation (i.e., ‘‘smearing’’ of nonzero precipitation into

FIG. 5. PRISM final monthly total precipitation analysis for February 2020 in the southeastern United States overlain

with (a) stations before QC screening, and (b) stations remaining after all QC screening steps were performed. Color fill

of station symbols matches that of the map. Many of the stations screened out had relatively low monthly totals.
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dry areas) and underestimating areas of locally high precip-

itation (Herrera et al. 2019; Hofstra et al. 2009). These effects

are most noticeable at the lowest and highest percentiles,

which can compromise extreme value statistics (Merino et al.

2021), but also dampen the overall day-to-day variability of

gridded daily precipitation values between stations (Fig. 6).

Other than increasing station density, spatial smoothing can

be lessened (although not completely eliminated) and the

accuracy of the interpolated precipitation field improved, by

employing grids of predictor variables that are most highly

correlated with local precipitation patterns. Ideal predictor

grids are those that add information over and above that

provided by the station precipitation data alone.

We have developed two complementary methods to minimize

spatial smoothing and improve accuracy. The first uses climato-

logically aided interpolation (CAI; Daly 2006; Daly et al. 2012;

Funk et al. 2000; Hamlet and Lettenmaier 2005; Willmott and

Robeson 1995). CAI relies on the assumption that local spatial

patterns of the element of interest being interpolated (e.g., daily or

monthly precipitation) bear some resemblance to those of an

existing grid of long-term climatology of the same, or related,

element of interest (called the predictor grid). In our application

of CAI, we employ PRISM to create a local linear regression at

each grid cell between previously developed PRISM monthly

normals (as the x values) and the station data (as the y values).

PRISM accounts for variations in the relationship between the

predictor grid and the station data caused by physiographic fea-

tures, such as proximity to moisture sources and rain shadowing

by terrain features. This is done by weighting the stations in the

regression function by the similarity of the station’s physiography

to that of the grid cell’s. CAI that uses mean precipitation cli-

matology as the predictor grid is most useful in the mountainous

westernUnited States, where long-term precipitation patterns are

often the result of an accumulation of repeatable patterns of

orographic amplification and rain shadowing of precipitation as

storms interact with terrain features (Fig. 7). Our use of CAI is

most effective at the monthly time step, which is then used to

inform the daily time series (see section 5a for details).

The second interpolation method uses radar-aided inter-

polation (RAI). In this case, the 24-h ST4 4-km gridded

radar–rain gauge product from AHPS serves as the predictor

grid. The ST4 analysis does not incorporate radar data over

the Rocky Mountains and westward, instead using a form of

CAI that employs long-term PRISM precipitation averages

(https://water.weather.gov/precip/about.php). Since we are

already applying CAI with PRISM long-term averages as

described above, we use the ST4 product east of the Rockies

only, with a narrow graduated zone along the periphery

(Fig. 8a). The ST4 analysis is provided at 4-km grid resolu-

tion, which is coarser than the native PRISM 800-m operating

resolution. Therefore, a modified Barnes (1964) Gaussian

filter is used to downscale the ST4 grids to 800m. ST4 can also

be termed an RAI product, because it assimilates station

observations into the analysis.

Once the two grid analyses (CAI and RAI) have been ap-

plied on a given day, a ‘‘besting’’ process is conducted on a

pixel-by-pixel basis to determine how toweight each analysis in

the final product. This involves assessing the predictive skill of

each analysis by comparing PRISM’s local regression corre-

lation coefficients between station precipitation data with

those from each predictor grid (CAI and RAI). However,

we cannot use the correlation coefficients directly from the

ST4 analysis for besting purposes because that analysis incor-

porates station data, which would produce artificially high

correlations with our station data. Instead, we run a second

RAI analysis using the AHPS stage-2 unbiased (ST2un) anal-

ysis as the predictor grid (ST2un was recently discontinued; see

section 7b for details). ST2un does not have individual station

observations incorporated, which makes for a fairer compari-

son with CAI. Based on the comparison of correlation coeffi-

cients between the CAI and ST2un analyses, an RAI weighting

factor (0–1) grid is calculated (Fig. 8). The weighting factor is

then applied to the original ST4 RAI grid when averaging it

with the CAI grid, to form a hybrid estimate for the day. In flat

terrain where radar beam blockage is minimal, use of RAI

often improves the mapping of daily precipitation relative to

CAI. This is especially true in summer, when rainfall patterns

are dominated by isolated, convective cells that often fall be-

tween weather stations, and are not explained well by long-

term normal precipitation patterns (Figs. 8b and 9). CAI and

RAI are more evenly effective in winter, when precipitation

patterns are broader in scale, andweather radar returns are less

effective at identifying frozen precipitation (Fig. 8c).

5. Challenge: Temporal consistency

a. Daily/monthly consistency

In addition to daily runs, PRISM is also run with station

data summarized at a monthly time step using CAI and RAI

in the same way as described above. Internal consistency

FIG. 6. Spatial distribution of the standard deviation of griddeddaily

precipitation over southern Missouri mapped with climatologically

aided interpolation (CAI). Standard deviation is expressed as a per-

cent of the averagemonthly total precipitation over allmonths in 2020.

The interpolation process dampens the day-to-day variability of the

gridded precipitation values, resulting in local maxima at station lo-

cations andminima between stations. Stations plottedwere used in the

July 2020 analysis; stations used in other months may vary.
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requires that the daily grids add up to the monthly grids. This

should be a simple matter of summing the daily grids to

produce a monthly product, but there is an advantage to first

determining which temporal product (daily or monthly) is

more robust, and where, and adjusting the other product to

match it. In the western United States, precipitation inter-

polated at the monthly time step better incorporates the re-

peatability of orographic signatures that can be lost at the

daily time step because of timing and data-precision issues

and thus has a stronger relationship with the long-term cli-

matology. This is especially useful where SNOTEL stations

are involved; the precision of the precipitation data is

2.54 mm (rather than the standard 0.254 mm), which can

cause timing issues when precipitation amounts are low. The

usefulness of the monthly time step in guiding daily pre-

cipitation interpolation has been recognized by other de-

velopers (e.g., Di Luzio et al. 2008). Therefore, in the

western United States, the PRISM dailies are adjusted to

match the monthly accumulations. To match the monthly

values at the end of a month, all daily values in a grid cell are

increased or decreased by the same ratio. In the case in

which a monthly gridcell precipitation value is measurable

($0.254mm) but the monthly sum of the daily precipitation

values for that grid cell is below measurable but nonzero,

precipitation is added to the days for which there was non-

zero precipitation until the monthly value is reached. The

result is that some of these daily values may now exceed the

measurable threshold, thus creating one or more ‘‘wet’’ days

with measurable precipitation in that month. However, if

the daily gridcell values sum to exactly zero (i.e., all days in

the month are exactly zero), the daily values remain un-

changed and the monthly value is set to zero; this improves

the field in cases in which the monthly analysis ‘‘smears’’

precipitation into dry areas.

East of the Rockies, in flat terrain where there are few

orographic signatures, the smearing of nonzero monthly pre-

cipitation totals into areas that should be dry is sometimes

seen. This is most noticeable before January 2002, when na-

tional radar-based analyses are not available and CAI alone is

the sole interpolation method. Therefore, the monthly total

precipitation grids east of the Rockies are adjusted to match

the sum of the dailies.

In an attempt to treat the resulting daily and monthly grid-

ded precipitation values in a way that is consistent with how

precipitation is observed and reported, a final postprocessing

step sets any monthly or daily gridcell value that falls below

0.254mm to zero. Since trace amounts are not measurable

quantitatively, they are not included in the grid values.

FIG. 7.WesternOregon (a) PRISMdaily precipitation analysis for 3 Jan 2021 using CAI, and (b) PRISM January

1981–2010 average precipitation climatology. Orographic enhancement and rain-shadowing patterns produced by

the Coast and Cascade Ranges on 3 Jan 2021 are similar to those of the long-term climatology for January and are

typical of most storms during January.
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b. Long-term consistency

Another challenge in mapping precipitation is maintaining

temporal consistency over long periods of time. Some users of

gridded precipitation datasets want to be able to analyze trends

and variations over periods spanning from decades to as long

as a century. This goal is, in many ways, at cross purposes with

the goal of developing datasets that are as accurate as possible.

For example, as discussed above, the use of RAI increases the

accuracy of our precipitation datasets significantly, but na-

tional radar-based analyses do not begin until 2002. Adding

RAI to the CAI-only approach in 2002 may produce non-

climatic shifts in precipitation statistics east of the Rockies,

such as wet day frequency and frequency of intense precipi-

tation. Further, station networks are continually changing, and

there is no source of highly dense station data that persists

over a long time period. Many important station networks we

ingest today were established within the past 20–30 years. For

example, CoCoRaHS, currently our largest network, was es-

tablished in 1998 and has grown steadily since then, creating a

relatively short period of record and a continually changing

data density. It may be possible to extend station periods of

record by infilling observations with estimates, but these esti-

mates would not be independent and therefore would be

subject to assumptions inherent in the estimation algorithm.

Our approach to partly address the issue of long-term

consistency is to develop a second precipitation dataset that

incorporates only those networks that have stations with

periods of record of at least 20–30 years. These include

AgriMet, COOP,WBAN,Mexico, Environment and Climate

Change Canada, the H. J. Andrews Long-Term Ecological

Research (LTER) site, MNGage, North Dakota State Water

Commission, RAWS, SNOTEL, and stations operated by the

Western Regional Climate Center. This dataset spans 1895–

present and is modeled at a monthly time step only. Detailed

descriptions of the two datasets, termed all-network (AN) and

long term (LT), are available in our PRISM Datasets document

(https://prism.oregonstate.edu/documents/PRISM_datasets.pdf).

Note that our public web portal (https://prism.oregonstate.edu)

disseminates the AN daily and monthly datasets only. Neither

dataset has been subjected to homogenization routines, which

attempt to identify and adjust breaks in station time series. For

our purposes it is most useful to improve station metadata first

before attempting such adjustments (see section 7).

6. Challenge: Operational considerations

The schedule on which daily precipitation data becomes

available and QCed, mapping is performed, and products are

disseminated is a function of data availability, computing

resources, and QC scheduling. Our goal is to produce the first

release of a daily precipitation grid within 24 h following the

end of that day. For example, gridded precipitation for the

day ending on 1200 UTC 15 July is normally available by

1200 UTC 16 July. By this time, PRISM modeling and the

besting process are done, graphics are produced, and the

PRISM public portal (https://prism.oregonstate.edu) and

FTP site and web services (https://prism.oregonstate.edu/

downloads) are populated. However, this is far earlier than

the latency time of many important station data sources and

their QC procedures. Therefore, we produce multiple releases

of a precipitation grid for a given day until most data have ar-

rived and have been QCed and edited by both the originator’s

and our in-house processes; only then we can safely call the grid

FIG. 8. Conterminous U.S. maps showing (a) the green-shaded

region east of the Rockies where RAI is applied, (b) daily average

RAI weighting factor for July 2010, and (c) daily average RAI

weighting factor for December 2010. RAI is most effective in im-

proving the analysis in summer, when precipitation is spotty and

convective, and when precipitation is in the form of rainfall rather

than snowfall.
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‘‘final.’’ On our schedule, a second release of 15 July is done on

20 July. The 5-day window accommodates the arrival times of

many COOP observations. Successive releases are then pre-

pared during the middle of each of the following six months,

for a total of eight releases. Each release overwrites the previ-

ous one. In our example, the precipitation grid for 15 July would

not become ‘‘final’’ until the middle of January. Once a grid is

final, it is not revisited until a new version of the time series is

developed, which typically occurs every few years as methods

improve, or as errors are identified. A calendar of release dates is

available at https://prism.oregonstate.edu/calendar.

The native resolution of the PRISM grids is 30 arc s

(;800m). These high-resolution time series datasets amount

to several terabytes in size, which often exceeds the capacity of

users to download and manipulate what can be thousands of

daily grids. The public website receives about a million grid

downloads each month, which also puts pressure on our ability

to provide the necessary bandwidth for such large downloads.

To resolve those issues, we filter the 800-m version of the AN

daily and monthly grids to 2.5 arc min (;4 km) resolution for

distribution on the public web portal. The native 800-m grids

are available to users but are typically delivered on portable

hard drives, and a fee is charged to cover processing and delivery

costs. The LT dataset is available only at 800-m resolution for

a fee. The monthly long-term normals (currently 1981–2010,

moving to 1991–2020 in late 2021) are available on the public

portal at both 800-m and 4-km resolutions.

7. Further work

a. Station data quality

In this paper, we advocate for ingesting station data from a

wide range of providers and sources. However, there is a

trade-off between station data density and quality that must

be considered when deciding whether to include a new data

source. PRISM datasets are used in many applications, in-

cluding some that involve litigation. Their quality must

therefore be very high and our methods well documented. To

include a data source, it is useful to have knowledge of the

measuring equipment and its siting and maintenance, as well

as observational protocols. This has, for example, kept us

from using precipitation data from the thousands of personal

weather stations across the country, for which we do not have

such information. However, early results from an in-house

study indicate that our QC process may be sufficient to screen

out the poor quality data from these networks. We also

continue to learn lessons about precipitation gauge and

shielding suitability at our field sites within the H. J. Andrews

Experimental Forest in the Oregon Cascades, which spans a

range of conditions frommainly rainfall at lower elevations to

heavy winter snowfalls at higher elevations (Daly et al. 2010).

We subject the station data to a lengthy series of QC steps

that include temporal adjustments, equipment screening, range

checks, radar-based checks for zeros and spikes, spatial con-

sistency screening using the PRISM interpolation algorithm,

and a manual QC review by expert analysts. However, there

still is much room for improving decision-making and adding

still more sources of information. The use of machine learning

presents a promising opportunity to improve QC decision-

making. We have a large set of observations that have been

QCed by expert analysts that could serve as a training dataset

for these algorithms. Remotely sensed data, such as cloud

cover, could at a minimum be used to screen out nonzero

precipitation observations in areas with no cloud cover in the

past 24 h.

One underappreciated QC issue is how to improve station

metadata, such as location coordinates, and observation times

of once-per-day observers. Attention to station metadata can

be tedious but may be more important than the quality of the

data themselves. Incorrect observation times or reporting on

the wrong day can result in temporal discrepancies in the data

FIG. 9. Daily accumulated precipitation on 9 Jul 2013 over Alabama and Georgia modeled with PRISM using

(a) CAI and (b) RAI. Station locations are denoted by black dots. The RAI analysis more clearly delineates

convective cells that are not resolved by the station data.
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that can dampen precipitation extremes by decreasing the

spatial autocorrelation among adjacent station measurements

(Timmermans et al. 2019) and cause long-term temporal in-

homogeneities in the station data. Our efforts to minimize

temporal inconsistencies have relied on published observation

times, but results suggest that the observation times reported

by observers are not always accurate. We are currently

conducting a multiyear effort to improve observation time in-

formation for COOP stations dating back to the 1800s.

Imprecise or inaccurate station locations also lowers the

quality of the interpolated field. In a study in the southern

Appalachians, we found that station mislocation was the

largest source of uncertainty in the precipitation interpolation

process (Daly et al. 2017). Location metadata are not always

consistent among different sources of the same data. The

precision to which they are given also varies and is often poor

for older stations before accurate location methods were

available. For some networks we have used Google Earth

satellite imagery to locate stations, but this method is only

useful for observations recorded in more recent years.

b. Interpolation methods

Work is also under way to improve our CAI and RAI

methods. Our current application of CAI uses monthly cli-

matologies that reflect precipitation totals summed over all

days in each month, averaged over a number of years. Long-

term means are inherently powerful predictors, because

storm configurations (e.g., upper-level flow directions) that

produce the largest contribution to the average monthly total

precipitation, either because they are wetter per storm or

occur more frequently (or both), are weighted more highly

than those producing little precipitation or those that occur

infrequently. However, storm patterns that deviate from the

mean condition do occur and can have important water bal-

ance implications (Lundquist et al. 2015). To better represent

the range of potential storm conditions, we are using PRISM

to develop a set of conditional CAI (CCAI) climatological

grids that represent mean total precipitation for a subset of

days in each month that have a variety of 700-hPa flow di-

rections. In operation, the CCAI grid that best matches the

day’s local flow direction would be used as the predictor grid,

rather than the climatology that includes all days in the

month. Mesoscale numerical models may provide an im-

portant source of information for differentiating these

orographic signatures where station data are lacking, such as

in remote mountainous regions (Lundquist et al. 2019). Such

models, if applied operationally at appropriate grid resolu-

tions and extents, could provide an additional predictor grid

in the PRISM interpolation process, and ultimately be

added to our CAI/RAI besting process as a third alternative.

Over longer time scales, measurements of streamflow also

provide valuable information on average areal precipitation

in watersheds where observations are sparse (Henn et al.

2018a,b).

The ST2un analysis used to weight the RAI analyses in the

besting process was discontinued in July 2020. At that time, we

replaced ST2un with the 24-h radar-only Multi-Radar Multi-

Sensor (MRMS; Zhang et al. 2016) product from the National

Centers for Environmental Prediction for the period 1200–

1200 UTC.We have been archiving MRMS products since late

2014 in anticipation of eventually also replacing theAHPS ST4

product with MRMS. MRMS grids are provided at a higher

resolution than theAHPS grids (;1 vs;4 km), and thus reveal

more detailed precipitation patterns. However, the higher

resolution also reveals visible artifacts in the radar fields that

need to be resolved if we are to useMRMS as predictor grids in

our RAI mapping. Much work has been done to identify and

remove many of these artifacts (Tang et al. 2020), but some

important artifacts remain. One type is ‘‘washboarding’’ in

the fields (Zhang et al. 2016), which appears to be caused by

oversampling fast-moving systems at 2-min intervals; that is,

more frequently than the typical radar refresh rate. This

causes some radar field snapshots to be repeated and others

skipped in an irregular sequence. Another type of artifact is

linear ray-shaped gaps in the field, created by radar beam

blockage by obstructions, that have been partly, but not

completely, rectified (Zhang et al. 2016). We have been de-

veloping methods to minimize washboarding that will be re-

ported in a future paper.

c. Uncertainty estimation

Our ability to provide accurate and defensible estimates of

the uncertainty in the daily precipitation products remains

limited. We have attempted to ascribe regional uncertainties

to our long-term monthly average datasets using cross-

validation exercises (as described in section 3e) and model-

generated regression prediction intervals (as described in

Daly et al. 2008). These two methods are not strictly com-

parable; cross validation provides information only at station

locations, while the model prediction interval is given at each

grid cell. However, these methods produced similar results

when aggregated to regional scales (Daly et al. 2008). Both

have significant weaknesses: cross-validation errors can ap-

pear misleadingly small when low-density station datasets are

used in the evaluation (e.g., Daly 2006), and the accuracy of

the prediction interval depends on the veracity of the model-

based assumptions (which is partly what we are trying to

evaluate in the first place). Another approach we have taken

more recently is to use a local network of rain gauges that is

sufficiently dense so as to closely approximate ‘‘ground

truth,’’ and perform evaluation exercises to estimate the

sources and magnitudes of uncertainties in the PRISM 800-m

national datasets (Daly et al. 2017). We are in the process of

identifying other such networks to help gain further insights

into the true uncertainties of our datasets, and in the future be

able to generalize the results across larger regions. Evaluating

differences between gauge-based estimates and other inde-

pendent sources, such as numerical model-based estimates,

also represents a promising path to assessing and quantifying

uncertainties.

8. Summary

This paper has attempted to highlight some of the chal-

lenges faced by groups developing daily gridded precipitation

datasets from surface observations on an operational basis,
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using examples of some of the issues we have been con-

fronting throughout the product development chain.We have

found that generating spatial precipitation datasets of high

quality requires careful attention to many steps in a lengthy

and detailed process. For the purposes of discussion, we

grouped the challenges into five categories that roughly fol-

low the production sequence: station density, data quality

control, spatial interpolation, temporal consistency, and op-

erational considerations.

The main takeaway from this discussion is that the quality

of the product is directly related to its information content,

and that each step in the process provides an opportunity to

maximize that content. The most basic opportunity is to

maximize station observation density and quality, which in-

cludes finding and accessing data from as many different

sources as possible and conducting extensive quality screen-

ing. The latency time of many important station data sources

may be weeks to months, however, so in the interest of both

timeliness and completeness, we release eight versions of a

day’s gridded precipitation data, the first 24 h after the day’s

end, and the last after 6 months have elapsed. The second

opportunity to maximize content is to distribute the station

data to a grid in a way that adds information to each grid cell

and minimizes the smoothing effect of the interpolation

process. We currently use two competing precipitation in-

terpolation methods, each based on a different source of in-

formation, and each best suited to different situations. CAI

uses the spatial precipitation patterns imbedded in a long-

term climatology to guide the interpolation, while RAI uses

radar-based products to provide the spatial precipitation

patterns for that day. Also, maintaining consistency among

different time scales (i.e., monthly vs daily) affords the op-

portunity to exploit information available at each scale. We

have found that monthly time step interpolation provides

more information than does daily in the western United

States where persistent orographic patterns predominate,

while the opposite is true in the east. Maintaining temporal

consistency over longer (i.e., from decadal to century) time

scales is unfortunately at cross purposes with maximizing the

information content of a dataset, because only long-term data

sources can be considered. Our approach has been to produce

two datasets, one that maximizes information content (AN)

and a second that includes only networks that maintain sta-

tions with long periods of record (LT). Neither dataset has

been subjected to statistical homogenization routines, which

attempt to identify and adjust breaks in station time series;

our priority is to improve station metadata first before at-

tempting such adjustments.

Precipitation is just one of several climate elements for

which we and others produce gridded datasets, such as

temperature, dewpoint, vapor pressure deficit, and variables

derived from these elements. While each element presents

its own unique problems, challenges faced in the develop-

ment process—station density, data quality control, spatial

interpolation, temporal consistency, and operational con-

siderations—apply to all, and each step in the process also

provides an opportunity to maximize information content in

the gridded product.
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Table S1.  Descriptions of the sources of station data used in PRISM gridded precipitation 

datasets. A network is used all year if it is maintained year-round, is thought to provide accurate 

measurements of frozen precipitation, or the network coverage area rarely experiences frozen 

precipitation.  Stations that do not qualify for “winter use” are used during the months of May-

September only.  

Source 

Abbreviation 
Description 

Winter Use? 

 

AGRIMET 
Bureau of Reclamation Cooperative Agricultural 

Weather Network 

Yes 

AGWXNET 
Washington State University’s Agricultural Weather 

Network (AgWeatherNet) 

No 

ASOS/ISH 

Automated Surface Observing System  and related 

networks (e.g., AWOS), and Integrated Surface Hourly 

(ISH) network 

Notes: ASOS network began installation in 1996, with 

poor instrumentation for measuring snowfall.   

No 

 

AZMET 
Arizona Meteorological Network 

Notes: Accessed via Mesowest data feed 

Yes 

CDEC 

California Data Exchange Center 

Notes:   A collection of stations from many networks 

operating in California.   

Yes 

COAGMET Colorado Agricultural Meteorological Network No 

COCORAHS 

Community Collaborative Rain, Hail and Snow 

Network 

Notes: Currently the largest ppt observing network in 

the US.  

Yes 

COOP 

National Weather Service Cooperative Observer 

Program  

Notes: These stations are obtained from the GHCN-D 

database.  COOP is the longest-running climate network 

in the US.  

Yes 

DEOS Delaware Environmental Observing System No 

EC 

Environment Canada 

Notes: These stations are obtained from the GHCN-D 

database. 

Yes 

FAWN Florida Automated Weather Network Yes 

HDSC 

NOAA Hydrometeorological Design Studies Center 

Notes:  A collection of ppt stations in California used by 

HDSC and PRISM to produce the NOAA Atlas 14 ppt 

frequency maps. Period of record ends in 2010.  

Yes 



HJA 

HJ Andrews Experimental Forest, Oregon, NSF Long 

Term Ecological Research Site (LTER); benchmark 

sites, reference stands, cold air transects 

Notes:  Data lag time is currently longer than 6 months, 

which is our cutoff for operational inclusion; this means 

that at present, HJA data can be included only when 

new versions of the datasets are created.  

Yes 

HYD 

Advanced Hydrologic Prediction Service River Forecast 

Centers via the National Weather Service Daily 

Hydrometeorological Products feed 

Notes:  Selected stations from a combination of many 

different networks.  Stations available from networks 

for which we have direct feeds are excluded (difficulties 

identifying the source networks in HYD produce 

occasional duplications).  

Yes 

 

KSTATE Kansas Mesonet, operated by Kansas State University No 

KYMESONET 
Kentucky Mesonet, operated by Western Kentucky 

University 

Yes 

LCRA Lower Colorado River Authority Network (Texas) No 

LUKEAFB Luke Air Force Base network, SW Arizona Yes 

MAWN 

Michigan Automated Weather Network 

Notes:  Currently known as the Enviro-weather 

Automated Weather Station Network; accessed via the 

Mesowest data feed 

No 

MEXICO 
Global Historical Climate Network – Mexico 

Notes:  These stations are part of the GHCN-D database 

Yes 

MN 
Minnesota Climatology Working Group, previously 

called Minnesota HiDen, now called MNGage 

Yes 

NCECONET 
North Carolina Environment and Climate Observing 

Network 

No 

NDAWN 

North Dakota Agricultural Weather Network 

Notes:  Provided by the High Plains Regional Climate 

Center as of February 2018 

No 

NDSWC North Dakota State Water Commission Yes 

NEMESO 

Nebraska Mesonet 

Notes:  Provided by the High Plains Regional Climate 

Center 

No 

NEVCAN Nevada Climate-Ecohydrological Assessment Network  Yes 

NJWXNET New Jersey Weather and Climate Network No 

OKMESO-

NET 
Oklahoma Mesonet 

Yes 

RAWS 
U.S. Forest Service and Bureau of Land Management 

Remote Automated Weather Stations 

No 



SFWMD South Florida Water Management District Yes 

SNOTEL 

Natural Resources Conservation Service Snowpack 

Telemetry 

Notes: The main high elevation network in western 

mountains.  

Yes 

UGA Georgia Mesonet, operated by the University of Georgia No 

USA University of South Alabama Mesonet No 

USCRN 

US Climate Reference Network 

Notes:  High-quality NOAA network designed to 

monitor long-term climatic variations in the US 

Yes 

USLTER 

Selected stations from selected NSF Long Term 

Ecological Research Sites: Hubbard Brook, Coweeta, 

Sevietta, Niwot Ridge 

Yes 

WBAN 

Weather Bureau, Army, Navy  

Notes:  These stations are part of the GHCN-D 

database.  In 1996, many WBAN stations converted to 

ASOS instrumentation. 

No 

WRCC Western Regional Climate Center Yes 
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